
Big Data and Data Mining

Fenerbahce University

Text Mining



Big Data and Data MiningDr. V. E. Levent

Assist. Prof. Vecdi Emre Levent

Office: 311

Email : emre.levent@fbu.edu.tr

Instructors



Big Data and Data MiningDr. V. E. Levent

Natural Language Processing (NLP)

NATURAL LANGUAGE PROCESSING WITH SPACY

A subfield of Artificial Intelligence (AI)

Helps computers to understand human 

language

Helps extract insights from unstructured data

Incorporates statistics, machine learning models

and deep learning models
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NLP use cases

NATURAL LANGUAGE PROCESSING WITH SPACY

Sentiment analysis

Use of computers to determine the underlying subjective tone of a piece of writing



Big Data and Data MiningDr. V. E. Levent

NLP use cases

NATURAL LANGUAGE PROCESSING WITH SPACY

Named entity recognition (NER)

Locating and classifying named entities mentioned in unstructured text into pre-defined 

categories

Named entities are

 real-world objects

 such as a person or location
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NLP use cases

Generate human-like responses to text input, such as ChatGPT
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Introduction to spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

spaCy is a free, open-source library for NLP in

Python which:

Is designed to build systems for information 

extraction

Provides production-ready code for NLP use

cases

Supports 64+ languages

 Included Turkish

Is robust and fast and has visualization 

libraries
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As the first step, spaCy can be installed 

using the Python package manager pip

spaCy trained models can be downloaded

Multiple trained models are available for 

English language at spacy.io

Install and import spaCy

python -m pip install spacy

python3 -m spacy download en_core_web_sm 

spacy

nlp = spacy.load("en_core_web_sm")

https://spacy.io/
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Loaded spaCy model en_core_web_sm = nlp object

nlp object converts text into a Doc object (container) to store processed text

Read and process text with spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY
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spaCy in action

NATURAL LANGUAGE PROCESSING WITH SPACY

Processing a string using spaCy

spacy

nlp = spacy.load("en_core_web_sm")

text = "A spaCy pipeline object is created." 

doc = nlp(text)

Tokenization

A Token is defined as the smallest meaningful part of the text.

Tokenization: The process of dividing a text into a list of meaningful tokens

print([token.text token doc])

['A', 'spaCy', 'pipeline', 'object', 'is', 'created', '.']
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spaCy NLP pipeline

NATURAL LANGUAGE PROCESSING WITH SPACY

spacy

nlp = spacy.load("en_core_web_sm")  

doc = nlp("Here's my spaCy pipeline.")

to return nlp , a

Import spaCy

Use spacy.load() 

Language class

The Language object is the text 

processing pipeline

Apply nlp() on any text to get a Doc

container
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spaCy NLP pipeline

spaCy applies some processing steps using its Language class:
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Container objects in spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

Name Description

A container for accessing linguistic annotations of text

A slice from a Doc object

An individual token, i.e. a word, punctuation, whitespace, etc.

There are multiple data structures to represent text data in spaCy :
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Component Name Description

Tokenizer Tokenizer Segment text into tokens and create Doc object

Tagger Tagger Assign part-of-speech tags

Lemmatizer Lemmatizer Reduce the words to their root forms

EntityRecognizer NER Detect and label named entities

Pipeline components

NATURAL LANGUAGE PROCESSING WITH SPACY

The spaCy language processing pipeline always depends on the loaded model and its 
capabilities.
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Pipeline components

NATURAL LANGUAGE PROCESSING WITH SPACY

Each component has unique features to process text

Language

DependencyParser 

Sentencizer
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Tokenization

NATURAL LANGUAGE PROCESSING WITH SPACY

['Tokenization', 'splits', 'a', 'sentence', 'into', 'its', 'tokens', '.']

Always the first operation

All the other operations require tokens

Tokens can be words, numbers and punctuation

import spacy

nlp = spacy.load("en_core_web_sm")

doc = nlp("Tokenization splits a sentence into its 

tokens.") 

print([token.text for token in doc])
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Sentence segmentation

NATURAL LANGUAGE PROCESSING WITH SPACY

More complex than tokenization

Is a part of DependencyParser component

spacy

nlp = spacy.load("en_core_web_sm")

text = "We are learning NLP. This course introduces spaCy." 

doc = nlp(text)

sent doc.sents: 

print(sent.text)

We are learning NLP.

This course introduces spaCy.
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Lemmatization

NATURAL LANGUAGE PROCESSING WITH SPACY

spacy

nlp = spacy.load("en_core_web_sm")

doc = nlp("We are seeing her after one year.") 

print([(token.text, token.lemma_) token doc])

[('We', 'we'), ('are', 'be'), ('seeing', 'see'), ('her', 'she'),

('after', 'after'), ('one', 'one'), ('year', 'year'), ('.', 

'.')]

A lemma is a the base form of a token The lemma of eats and 
ate is eat Improves accuracy of language models
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POS tagging

NATURAL LANGUAGE PROCESSING WITH SPACY

POS Description Example

VERB Verb run, eat, ate, take

NOUN Noun man, airplane, tree, flower

ADJ Adjective big, old, incompatible, conflicting

ADV Adverb very, down, there, tomorrow

CONJ Conjunction and, or, but

Categorizing words grammatically, based on function and context within a sentence
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POS tagging confirms the meaning of a word

Some words such as watch can be both noun and verb

spaCy captures POS tags in the pos_ feature of the nlp pipeline

spacy.explain() explains a given POS tag

POS tagging with spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY
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POS tagging with spaCy

verb_sent = "I watch TV."

print([(token.text, token.pos_, 

spacy.explain(token.pos_))

token nlp(verb_sent)])

[('I', 'PRON', 'pronoun'),

('watch', 'VERB', 'verb'),

('TV', 'NOUN', 'noun'),

('.', 'PUNCT', 'punctuation')]

noun_sent = "I left without my watch."

print([(token.text, token.pos_, 

spacy.explain(token.pos_))

token nlp(noun_sent)])

[('I', 'PRON', 'pronoun'),

('left', 'VERB', 'verb'),

('without', 'ADP', 'adposition'),

('my', 'PRON', 'pronoun'),

('watch', 'NOUN', 'noun'),

('.', 'PUNCT', 'punctuation')]
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Named entity recognition

NATURAL LANGUAGE PROCESSING WITH SPACY

Entity type Description

PERSON Named person or family

ORG Companies, institutions, etc.

GPE Geo-political entity, countries, cities, etc.

LOC Non-GPE locations, mountain ranges, etc.

DATE Absolute or relative dates or periods

TIME Time smaller than a day

A named entity is a word or phrase that refers to a specific entity with a name

Named-entity recognition (NER) classifies named entities into pre-defined categories
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NER and spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

spaCy models extract named entities using the NER pipeline component

Named entities are available via the doc.ents property

spaCy will also tag each entity with its entity label ( .label_ )
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NER and spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

spacy

nlp = spacy.load("en_core_web_sm") 

text = "Albert Einstein was genius." 

doc = nlp(text)

print([(ent.text, ent.start_char, 

ent.end_char, ent.label_) ent doc.ents])

>>> [('Albert Einstein', 0, 15, 'PERSON')]
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NER and spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

We can also access entity types of each token in a Doc container

spacy

nlp = spacy.load("en_core_web_sm") 

text = "Albert Einstein was genius." 

doc = nlp(text)

print([(token.text, token.ent_type_) token doc])

>>> [('Albert', 'PERSON'), ('Einstein', 

'PERSON'), ('was', ''), ('genius', ''), ('.', '')]
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displaCy

spaCy is equipped with a modern 

visualizer: displaCy

The displaCy entity visualizer highlights 

named entities and their labels

spacy

spacy displacy

text = "Albert Einstein was genius." 

nlp = spacy.load("en_core_web_sm") 

doc = nlp(text)

displacy.serve(doc, style="ent")
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POS tagging

NATURAL LANGUAGE PROCESSING WITH SPACY

POS tags depend on the context, surrounding words and their tags

spacy

nlp = spacy.load("en_core_web_sm")

text = "My cat will fish for a fish tomorrrow in a fishy way." 

print([(token.text, token.pos_, spacy.explain(token.pos_))

token nlp(text)])
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What is the importance of POS?

NATURAL LANGUAGE PROCESSING WITH SPACY

Word-sense disambiguation (WSD) is the problem of deciding in which sense a word is used 

in a sentence.

Determining the sense of the word can be crucial in machine translation, etc.
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Word-sense disambiguation

NATURAL LANGUAGE PROCESSING WITH SPACY

spacy

nlp = spacy.load("en_core_web_sm")

verb_text = "I will fish tomorrow."

noun_text = "I ate fish."

print([(token.text, token.pos_) token nlp(verb_text) "fish" token.text],

"\n")

print([(token.text, token.pos_) token nlp(noun_text) "fish" token.text])

[('fish', 'VERB', 'verb')]

[('fish', 'NOUN', 'noun')]
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Dependency parsing
Explores a sentence syntax Links between two tokens Results in a tree

NATURAL LANGUAGE PROCESSING WITH SPACY
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Dependency parsing and spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

Dependency label Description

nsubj Nominal subject

root Root

det Determiner

dobj Direct object

aux Auxiliary

Dependency label describes the type of syntactic relation between two tokens



Big Data and Data MiningDr. V. E. Levent

Dependency parsing and displaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

displaCy can draw dependency trees

doc = nlp("We understand the differences.")

spacy.displacy.serve(doc, style="dep")
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Dependency parsing and spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

.dep_ attribute to access the dependency label of a token

doc = nlp("We understand the differences.") 

print([(token.text, token.dep_, spacy.explain(token.dep_)) token doc])

[('We', 'nsubj', 'nominal subject'), ('understand', 'ROOT', 'root'),

('the', 'det', 'determiner'), ('differences', 'dobj', 'direct object'), 

('.', 'punct', 'punctuation')]
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Wordvectors (embeddings)

NATURAL LANGUAGE PROCESSING WITH SPACY

Sentences I got covid coronavirus

I got covid 1 2 3

Igot coronavirus 1 2 4

Numerical representations of words

Bag of words method: {"I": 1, "got": 2, ...}

Older methods do not allow to understand the meaning:



Big Data and Data MiningDr. V. E. Levent

Wordvectors

NATURAL LANGUAGE PROCESSING WITH SPACY

A pre-defined number of dimensions

Considers word frequencies and the presence of other words in similar contexts
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Wordvectors

NATURAL LANGUAGE PROCESSING WITH SPACY

Multiple approaches to produce word vectors:

word2vec, Glove, fastText and transformer-based architectures

An example of a word vector:
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spaCy vocabulary

NATURAL LANGUAGE PROCESSING WITH SPACY

A part of many spaCy models.

en_core_web_md has 300-dimensional vectors for 20,000 words.

spacy

nlp = spacy.load("en_core_web_md") 

print(nlp.meta["vectors"])

>>> {'width': 300, 'vectors': 20000, 'keys': 514157, 

'name': 'en_vectors', 'mode': 'default'}

python -m spacy download en_core_web_md
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Wordvectors in spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

nlp.vocab : to access vocabulary ( Vocab class)

nlp.vocab.strings : to access word IDs in a vocabulary

spacy

nlp = spacy.load("en_core_web_md") 

like_id = nlp.vocab.strings["like"] 

print(like_id)

>>> 18194338103975822726

.vocab.vectors : to access words vectors of a model or a word, given its corresponding ID

print(nlp.vocab.vectors[like_id])

>>> array([-2.3334e+00, -1.3695e+00, -1.1330e+00, -6.8461e-01, ...])
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Wordvectors visualization
Word vectors allow to understand how words are grouped

NATURAL LANGUAGE PROCESSING WITH SPACY

Principal Component Analysis projects 

word vectors into a two-dimensional space
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Wordvectors visualization

NATURAL LANGUAGE PROCESSING WITH SPACY

Import required libraries and a spaCy model.

PCA

matplotlib.pyplot plt 

sklearn.decomposition

numpy np

nlp = spacy.load("en_core_web_md")

Extract word vectors for a given list of words and stack them vertically.

words = ["wonderful", "horrible",

"apple", "banana", "orange", "watermelon", 

"dog", "cat"]

word_vectors = np.vstack([nlp.vocab.vectors[nlp.vocab.strings[w]] w words])
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Wordvectors visualizations

NATURAL LANGUAGE PROCESSING WITH SPACY

Extract two principal components using PCA.

pca = PCA(n_components=2)

word_vectors_transformed = pca.fit_transform(word_vectors)

Visualize the scatter plot of transformed vectors.

plt.figure(figsize=(10, 8))

plt.scatter(word_vectors_transformed[:, 0], word_vectors_transformed[:, 1]) 

word, coord zip(words, word_vectors_transformed):

x, y = coord

plt.text(x, y, word, size=10) 

plt.show()
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Analogies and vector operations

NATURAL LANGUAGE PROCESSING WITH SPACY

A semantic relationship between a pair of words.

Word embeddings generate analogies such as gender and tense: 

queen - woman +man =king
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Similar words in a vocabulary

NATURAL LANGUAGE PROCESSING WITH SPACY

spaCy find semantically similar terms to a given term

numpy np 

spacy

nlp = spacy.load("en_core_web_md")

word = "covid"

most_similar_words = nlp.vocab.vectors.most_similar( 

np.asarray([nlp.vocab.vectors[nlp.vocab.strings[word]]]), n=5)

w most_similar_words[0][0]]words = [nlp.vocab.strings[w] 

print(words)

>>> ['Covi', 'CoVid', 'Covici', 'COVID-19', 'corona']
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The semantic similarity method

NATURAL LANGUAGE PROCESSING WITH SPACY

Process of analyzing texts to identify similarities

Categorizes texts into predefined categories or detect relevant texts 

Similarity score measures how similar two pieces of text are

What is the cheapest flight from Boston to Seattle? 

Which airline serves Denver, Pittsburgh and Atlanta? 

What kinds of planes are used by American Airlines?
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Similarity score

NATURAL LANGUAGE PROCESSING WITH SPACY

A metric defined over texts

To measure similarity use Cosine similarity and word vectors 

Cosine similarity is any number between 0 and 1
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Token similarity

NATURAL LANGUAGE PROCESSING WITH SPACY

spaCy calculates similarity scores between Token objects

nlp = spacy.load("en_core_web_md") 

doc1 = nlp("We eat pizza")

doc2 = nlp("We like to eat pasta")

token1 = doc1[2]

token2 = doc2[4]

print(f"Similarity between {token1} and {token2} = ", round(token1.similarity(token2), 3))

>>> Similarity between pizza and pasta = 0.685
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Span similarity

NATURAL LANGUAGE PROCESSING WITH SPACY

spaCy calculates semantic similarity of two given Span objects

doc1 = nlp("We eat pizza")

doc2 = nlp("We like to eat pasta")

span1 = doc1[1:] 

span2 = doc2[1:]

print(f"Similarity between \"{span1}\" and \"{span2}\" = ", 

round(span1.similarity(span2), 3))

>>> Similarity between "eat pizza" and "like to eat pasta" = 0.588

print(f"Similarity between \"{doc1[1:]}\" and \"{doc2[3:]}\" = ",

round(doc1[1:].similarity(doc2[3:]), 3))

>>> Similarity between "eat pizza" and "eat pasta" = 0.936
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Doc similarity

NATURAL LANGUAGE PROCESSING WITH SPACY

spaCy calculates the similarity scores between two documents

nlp = spacy.load("en_core_web_md")

doc1 = nlp("I like to play basketball") 

doc2 = nlp("I love to play basketball")

print("Similarity score :", round(doc1.similarity(doc2), 3))

>>> Similarity score : 0.975

High cosine similarity shows highly semantically similar contents

Doc vectors default to an average of word vectors
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Sentence similarity

NATURAL LANGUAGE PROCESSING WITH SPACY

spaCy finds relevant content to a given keyword

Finding similar customer questions to the word price:

sentences = nlp("What is the cheapest flight from Boston to Seattle?

Which airline serves Denver, Pittsburgh and Atlanta? 

What kinds of planes are used by American Airlines?")

keyword = nlp("price")

i, sentence enumerate(sentences.sents):

print(f"Similarity score with sentence {i+1}: ", round(sentence.similarity(keyword), 5))

>>> Similarity score with sentence 1: 0.26136

Similarity score with sentence 2: 

Similarity score with sentence 3:

0.14021

0.13885
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spaCy pipelines

NATURAL LANGUAGE PROCESSING WITH SPACY

spaCy first tokenizes the text to produce a Doc object

The Doc is processed in several different steps of processing pipeline

spacy

nlp = spacy.load("en_core_web_sm")

doc = nlp(example_text)
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spaCy pipelines

NATURAL LANGUAGE PROCESSING WITH SPACY

A pipeline is a sequence of pipes, or actors on data

A spaCy NER pipeline: 

Tokenization

Named entity identification 

Named entity classification

print([ent.text ent doc.ents])
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Adding pipes

NATURAL LANGUAGE PROCESSING WITH SPACY

sentencizer : spaCy pipeline component for sentence segmentation.

text = " ".join(["This is a test sentence."]*10000) 

en_core_sm_nlp = spacy.load("en_core_web_sm") 

start_time = time.time()

doc = en_core_sm_nlp(text)

print(f"Finished processing with en_core_web_sm model in

{round((time.time() - start_time)/60.0 , 5)} minutes")

>>> Finished processing with en_core_web_sm model in 0.09332 minutes
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Adding pipes

NATURAL LANGUAGE PROCESSING WITH SPACY

Create a blank model and add a sentencizer pipe:

blank_nlp = spacy.blank("en") 

blank_nlp.add_pipe("sentencizer") 

start_time = time.time()

doc = blank_nlp(text)

print(f"Finished processing with blank model in

{round((time.time() - start_time)/60.0 , 5)} minutes")

>>> Finished processing with blank model in 0.00091 minutes
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Analyzing pipeline components

NATURAL LANGUAGE PROCESSING WITH SPACY

nlp.analyze_pipes() analyzes a spaCy pipeline to determine: 

Attributes that pipeline components set

Scores a component produces during training 

Presence of all required attributes

Setting pretty to True will print a table instead of only returning the structured data.

spacy

nlp = spacy.load("en_core_web_sm") 

analysis = nlp.analyze_pipes(pretty=True)



Big Data and Data MiningDr. V. E. Levent

Analyzing pipeline components

NATURAL LANGUAGE PROCESSING WITH SPACY
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spaCy EntityRuler

NATURAL LANGUAGE PROCESSING WITH SPACY

EntityRuler adds named-entities to a Doc container

It can be used on its own or combined with EntityRecognizer

Phrase entity patterns for exact string matches (string):

{"label": "ORG", "pattern": "Microsoft"}

Token entity patterns with one dictionary describing one token (list):

{"label": "GPE", "pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}]}
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Adding EntityRuler to spaCy pipeline

NATURAL LANGUAGE PROCESSING WITH SPACY

Using .add_pipe() method

List of patterns can be added using .add_patterns() method

nlp = spacy.blank("en")

entity_ruler = nlp.add_pipe("entity_ruler")

patterns = [{"label": "ORG", "pattern": "Microsoft"},

{"label": "GPE", "pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}]}] 

entity_ruler.add_patterns(patterns)
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Adding EntityRuler to spaCy pipeline

NATURAL LANGUAGE PROCESSING WITH SPACY

.ents store the results of an EntityLinker component

doc = nlp("Microsoft is hiring software developer in San 

Francisco.") print([(ent.text, ent.label_) ent doc.ents])

[('Microsoft', 'ORG'), ('San Francisco', 'GPE')]
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EntityRuler in action

NATURAL LANGUAGE PROCESSING WITH SPACY

Integrates with spaCy pipeline components

Enhances the named-entity recognizer

spaCy model without EntityRuler :

nlp = spacy.load("en_core_web_sm")

doc = nlp("Manhattan associates is a company in the U.S.") 

print([(ent.text, ent.label_) ent doc.ents])

>>> [('Manhattan', 'GPE'), ('U.S.', 'GPE')]
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EntityRuler in action

NATURAL LANGUAGE PROCESSING WITH SPACY

EntityRuler added after existing ner component:

nlp = spacy.load("en_core_web_sm")

ruler = nlp.add_pipe("entity_ruler", after='ner')

patterns = [{"label": "ORG", "pattern": [{"lower": "manhattan"}, {"lower": "associates"}]}] 

ruler.add_patterns(patterns)

doc = nlp("Manhattan associates is a company in the U.S.") 

print([(ent.text, ent.label_) ent doc.ents])

>>> [('Manhattan', 'GPE'), ('U.S.', 'GPE')]
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EntityRuler in action

NATURAL LANGUAGE PROCESSING WITH SPACY

EntityRuler added before existing ner component:

nlp = spacy.load("en_core_web_sm")

ruler = nlp.add_pipe("entity_ruler", before='ner')

patterns = [{"label": "ORG", "pattern": [{"lower": "manhattan"}, {"lower": "associates"}]}] 

ruler.add_patterns(patterns)

doc = nlp("Manhattan associates is a company in the U.S.") 

print([(ent.text, ent.label_) ent doc.ents])

>>> [('Manhattan associates', 'ORG'), ('U.S.', 'GPE')]
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What is RegEx?

Rule-based information extraction (IR) is useful for many NLP tasks

Regular expression (RegEx) is used with complex string matching patterns 

RegEx finds and retrieves patterns or replace matching patterns
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RegEx strengths and weaknesses

NATURAL LANGUAGE PROCESSING WITH SPACY

Pros: Cons:

Enables writing robust rules to retrieve 

information

Can allow us to find many types of 

variance in strings

Runs fast

Supported by programming languages

Syntax is challenging for beginners

Requires knowledge of all the ways a 

pattern may be mentioned in texts
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RegEx in Python

NATURAL LANGUAGE PROCESSING WITH SPACY

Python comes prepackaged with a RegEx library, re .

The first step in using re package is to define a pattern . 

The resulting pattern is used to find matching content.

re

pattern = r"((\d){3}-(\d){3}-(\d){4})"

text = "Our phone number is 832-123-5555 and their phone number is 425-123-

4567."
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RegEx in Python

NATURAL LANGUAGE PROCESSING WITH SPACY

packageWe use .finditer() method from re

iter_matches = re.finditer(pattern, text)

match iter_matches:

start_char = match.start() 

end_char = match.end()

print ("Start character: ", start_char, "| End character: ", end_char, 

"| Matching text: ", text[start_char:end_char])

>>> Start character: 20 | End character: 32 | Matching text: 832-123-5555 

Start character: 59 | End character: 71 | Matching text: 425-123-4567
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RegEx in spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

RegEx in three pipeline components: Matcher , PhraseMatcher and EntityRuler

.

text = "Our phone number is 832-123-5555 and their phone number is 425-123-4567." 

nlp = spacy.blank("en")

patterns = [{"label": "PHONE_NUMBER", "pattern": [{"SHAPE": "ddd"},

{"ORTH": "-"}, {"SHAPE": "ddd"},

{"ORTH": "-"}, {"SHAPE": "dddd"}]}]

ruler = nlp.add_pipe("entity_ruler") 

ruler.add_patterns(patterns)

doc = nlp(text)

print ([(ent.text, ent.label_) ent doc.ents])

>>> [('832-123-5555', 'PHONE_NUMBER'), ('425-123-4567', 'PHONE_NUMBER')]
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Matcher in spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

RegEx patterns can be complex, difficult to read and debug.

spaCy provides a readable and production-level alternative, the Matcher class.

spacy

spacy.matcher Matcher 

nlp = spacy.load("en_core_web_sm")

doc = nlp("Good morning, this is our first day on campus.") 

matcher = Matcher(nlp.vocab)
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Matcher in spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

Matching output include start and end token indices of the matched pattern.

pattern = [{"LOWER": "good"}, {"LOWER": "morning"}] 

matcher.add("morning_greeting", [pattern])

matches = matcher(doc)

match_id, start, end matches:

print("Start token: ", start, " | End token: ", end, 

"| Matched text: ", doc[start:end].text)

>>> Start token: 0 | End token: 2 | Matched text: Good morning



Big Data and Data MiningDr. V. E. Levent

Matcher extended syntax support

NATURAL LANGUAGE PROCESSING WITH SPACY

Allows operators in defining the matching patterns.

Similar operators to Python's in , not in and comparison operators

Attribute Value type Description

IN any type Attribute value is a member of a list

NOT_IN any type Attribute value is not a member of a list

== , >= , <= , > , < int, float Comparison operators for equality or inequality
checks
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Matcher extended syntax support

NATURAL LANGUAGE PROCESSING WITH SPACY

Using IN operator to match both good morning and good evening

doc = nlp("Good morning and good evening.") 

matcher = Matcher(nlp.vocab)

pattern = [{"LOWER": "good"}, {"LOWER": {"IN": ["morning", "evening"]}}] 

matcher.add("morning_greeting", [pattern])

matches = matcher(doc)

The output of matching using IN operator

match_id, start, end matches:

print("Start token: ", start, " | End token: ", end, 

"| Matched text: ", doc[start:end].text)

>>> Start token: 0 | End token: 2 | Matched text: Good morning 

Start token: 3 | End token: 5 | Matched text: good evening
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PhraseMatcher in spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

PhraseMatcher class matches a long list of phrases in a given text.

spacy.matcher PhraseMatcher 

nlp = spacy.load("en_core_web_sm") 

matcher = PhraseMatcher(nlp.vocab) 

terms = ["Bill Gates", "John Smith"]
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PhraseMatcher in spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

PhraseMatcher outputs include start and end token indices of the matched pattern

patterns = [nlp.make_doc(term) term terms] 

matcher.add("PeopleOfInterest", patterns)

doc = nlp("Bill Gates met John Smith for an important discussion regarding 

importance of AI.")

matches = matcher(doc)

match_id, start, end matches:

print("Start token: ", start, " | End token: ", end, 

"| Matched text: ", doc[start:end].text)

>>> Start token: 0 | End token: 2 | Matched text: Bill Gates 

Start token: 3 | End token: 5 | Matched text: John Smith
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PhraseMatcher in spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

We can use attr argument of the PhraseMatcher

matcher = PhraseMatcher(nlp.vocab, attr = "LOWER") 

terms = ["Government", "Investment"]

class

patterns = [nlp.make_doc(term) term terms] 

matcher.add("InvestmentTerms", patterns)

doc = nlp("It was interesting to the investment division of the government.")

matcher = PhraseMatcher(nlp.vocab, attr = "SHAPE") 

terms = ["110.0.0.0", "101.243.0.0"]

patterns = [nlp.make_doc(term) term terms] 

matcher.add("IPAddresses", patterns)

doc = nlp("The tracked IP address was 234.135.0.0.")
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Why train spaCy models?

NATURAL LANGUAGE PROCESSING WITH SPACY

Go a long way for general NLP use cases

But may not have seen specific domains data during their training, e.g.

Twitter data

Medical data
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Why train spaCy models?

NATURAL LANGUAGE PROCESSING WITH SPACY

Better results on your specific domain

Essential for domain specific text classification

Before start training, ask the following questions:

Do spaCy models perform well enough on our data?

Does our domain include many labels that are absent in spaCy models?
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Models performance on our data

NATURAL LANGUAGE PROCESSING WITH SPACY

Do spaCy models perform well enough on our data?

Oxford Street is not correctly classified with a GPE label:

spacy

nlp = spacy.load("en_core_web_sm")

text = "The car was navigating to the Oxford 

Street." doc = nlp(text)

print([(ent.text, ent.label_) ent doc.ents])

[('the Oxford Street', 'ORG')]
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Output labels in spaCy models

NATURAL LANGUAGE PROCESSING WITH SPACY

Does our domain include many labels that are absent in spaCy models?
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Output labels in spaCy models

NATURAL LANGUAGE PROCESSING WITH SPACY

If we need custom model training, we follow these steps:

Collect our domain specific data 

Annotate our data

Determine to update an existing model or train a model from scratch
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Training steps

NATURAL LANGUAGE PROCESSING WITH SPACY

1. Annotate and prepare input data

2. Initialize the model weight

3. Predict a few examples with the current weights

4. Compare prediction with correct answers

5. Use optimizer to calculate weights that improve model performance

6. Update weights slightly

7. Go back to step 3.
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Annotating and preparing data

NATURAL LANGUAGE PROCESSING WITH SPACY

First step is to prepare training data in required format

After collecting data, we annotate it

Annotation means labeling the intent, entities, etc. 

This is an example of annotated data:

annotated_data = {

"sentence": "An antiviral drugs used against influenza is neuraminidase inhibitors.", 

"entities": {

"label": "Medicine",

"value": "neuraminidase inhibitors",

}

}
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Annotating and preparing data

NATURAL LANGUAGE PROCESSING WITH SPACY

Here's another example of annotated data:

annotated_data = {

"sentence": "Bill Gates visited the SFO Airport.", 

"entities": [{"label": "PERSON", "value": "Bill Gates"},

{"label": "LOC", "value": "SFO Airport"}]

}
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spaCy training data format
Data annotation prepares training data for what we want the model to learn Training 

dataset has to be stored as a dictionary:

NATURAL LANGUAGE PROCESSING WITH SPACY

training_data = [

("I will visit you in Austin.", {"entities": [(20, 26, "GPE")]}),

("I'm going to Sam's house.", {"entities": [(13,18, "PERSON"), (19, 24, "GPE")]}), 

("I will go.", {"entities": []})

]

Three example pairs:

Each example pair includes a sentence as the first element

Pair's second element is list of annotated entities and start and end characters
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Example object data for training

NATURAL LANGUAGE PROCESSING WITH SPACY

We cannot feed the raw text directly to spaCy

We need to create an Example object for each training example

spacy 

spacy.training Example

nlp = spacy.load("en_core_web_sm")

doc = nlp("I will visit you in Austin.") 

annotations = {"entities": [(20, 26, "GPE")]}

example_sentence = Example.from_dict(doc, annotations) 

print(example_sentence.to_dict())
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Training steps

NATURAL LANGUAGE PROCESSING WITH SPACY

1. Annotate and prepare input data

2. Disable other pipeline components

3. Train a model for a few epochs

4. Evaluate model performance
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Disabling other pipeline components

NATURAL LANGUAGE PROCESSING WITH SPACY

Disable all pipeline components except NER:

other_pipes = [pipe pipe nlp.pipe_names pipe != 'ner']

nlp.disable_pipes(*other_pipes)
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Model training procedure

NATURAL LANGUAGE PROCESSING WITH SPACY

Go over the training set several times; one iteration is called an

In each epoch, update the weights of the model with a small number.

Optimizers update the model weights.

.

optimizer = nlp.create_optimizer()

losses = {}

i range(epochs): 

random.shuffle(training_data)

text, annotation training_data: 

doc = nlp.make_doc(text)

example = Example.from_dict(doc, annotation) 

nlp.update([example], sgd = optimizer, losses=losses)
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Save and load a trained model

NATURAL LANGUAGE PROCESSING WITH SPACY

Save a trained NER model:

ner = nlp.get_pipe("ner") 

ner.to_disk("<ner model name>")

Load the saved model:

ner = nlp.create_pipe("ner") 

ner.from_disk("<ner model name>") 

nlp.add_pipe(ner, "<ner model name>")
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Model for inference

NATURAL LANGUAGE PROCESSING WITH SPACY

Use a saved model at inference.

Apply NER model and store tuples of (entity text, entity label):

doc = nlp(text)

entities = [(ent.text, ent.label_) ent doc.ents]
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