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Natural Language Processing (NLP)

A subfield of Artificial Intelligence (AI)

Helps computers to understand human
language

Helps extract insights from unstructured data

Incorporates statistics, machine learning models
and deep learning models
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NLP use cases

Sentiment analysis

Use of computers to determine the underlying subjective tone of a piece of writing
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Positive Negative

“Great service and affordable “This was a horrible experience.
price. | will buy it again.” Not worth the money”
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NLP use cases

Named entity recognition (NER)

Locating and classifying named entities mentioned in unstructured text into pre-defined
categories

Named entities are
real-world objects

such as a person or location

John McCarthy Name)was born on September 4, 1927,
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NLP use cases

Generate human-like responses to text input, such as ChatGPT

Dr. V. E. Levent Big Data and Data Mining



Introduction to spaCy

spaCy is a free, open-source library for NLP in
Python which:

Is designed to build systems for information
extraction

Provides production-ready code for NLP use
cases

Supports 64+ languages
Included Turkish

Is robust and fast and has visualization
libraries
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Install and import spaCy

using the Python package manager pip

spaCy trained models can be downloaded python3 -m spacy download en core web sm

import spacy

Multiple trained models are available for
English language at spacy.io

nlp = spacy.load("en core web sm")
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https://spacy.io/

Read and process text with spaCy

Loaded spacy model en core web sm = nlp oObject

nlp Object converts text into a poc object (container) to store processed text

Tokens

nlp(Text) Linguistic

object annotations

Relationships
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spaCy in action

import spacy
nlp = spacy.load("en core web sm")
text = "A spaCy pipeline object is created."

doc = nlp(text)

print ([token.text for token in doc])

['A', 'spaCy', 'pipeline', 'object', 'is', 'created', '.']
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i Import C
import spacy P ety

= spacy.load("en core web sm") Use spacy.load() to return nlp ,d
= nlp("Here's my spaCy pipeline.") Language Class

The Language object is the text
processing pipeline

Apply nlp() on any texttogeta poc
container
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spaCy NLP pipeline

spaCy applies some processing steps using itS Language class:

Text
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Container objects in spaCy

There are multiple data structures to represent text data in spacy :

Name Description

A container for accessing linguistic annotations of text

Span A slice from a poc object

An individual token, i.e. a word, punctuation, whitespace, etc.
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Pipeline components

The spaCy language processing pipeline always depends on the loaded model and its
capabilities.

Component Name Description

Segment text into tokens and create poc object

Tagger Tagger Assign part-of-speech tags

Reduce the words to their root forms

EntityRecognizer NER Detect and label named entities
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Pipeline components

Each component has unique features to process text
Language

DependencyParser

Sentencizer
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Tokenization

Always the first operation

All the other operations require tokens
Tokens can be words, numbers and punctuation

import spacy

nlp = spacy.load("en core web sm")
doc = nlp("Tokenization splits a sentence into its
tokens.")

print ([token.text for token in doc])

['Tokenization', 'splits', 'a', 'sentence', 'into', 'its', 'tokens', '.']
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Sentence segmentation

DependencyParser

import spacy

nlp = spacy.load("en core web sm")

text = "We are learning NLP. This course introduces spaCy."

doc = nlp(text)
for sent jin doc.sents:

print (sent.text)

We are learning NLP.

This course introduces spaCy.
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Lemmatization

A lemmma is a the base form of a token The lemma of eats and
ate is eat Improves accuracy of language models

import spacy
spacy.load ("en core web sm")

nlp ("We are seeing her after one year.")

print ([ (token.text, token.lemma ) fgop token jip doc])

[("We', 'we'), ('are', 'be'), ('seeing', 'see'), ('her', 'she'),

('after', 'after'), ('one', 'one'), ('year', 'year'), ('.',

l.l)]
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POS tagging

Categorizing words grammatically, based on function and context within a sentence

POS Description Example

VERB run, eat, ate, take

NOUN Noun man, airplane, tree, flower

Adjective big, old, incompatible, conflicting

ADV  Adverb very, down, there, tomorrow

CONJ | Conjunction| and, or, but
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POS tagging with spaCy

POS tagging confirms the meaning of a word
Some words such as watch can be both noun and verb

spaCy captures POS tags in the pos feature of the nip pipeline

spacy.explain () explains a given POS tag
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POS tagging with spaCy

verb sent = "I watch Tv." noun sent = "I left without my watch."

print ([ (token.text, token.pos , print ([ (token.text, token.pos ,

spacy.explain (token.pos )) spacy.explain (token.pos ))

for token 1n nlp(verb sent)]) for token 1n nlp (noun sent)])

[('I', '"PRON', 'pronoun'), [('I', '"PRON', 'pronoun'),
('watch', 'VERB', 'verb'), ('left', 'VERB', 'wverb'),
('TV', 'NOUN', 'noun'), ('"without', 'ADP', 'adposition'),
('".', '"PUNCT', 'punctuation')] ('"my', 'PRON', 'pronoun'),

('watch', 'NOUN', 'noun'),

(".', '"PUNCT', 'punctuation')]
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Named entity recognition

A named entity is a word or phrase that refers to a specific entity with a name

Named-entity recognition (NER) classifies named entities into pre-defined categories

Entity type Description

PERSON Named person or family

ORG Companies, institutions, etc.

GPE Geo-political entity, countries, cities, etc.

LOC Non-GPE locations, mountain ranges, etc.

DATE Absolute or relative dates or periods

TIME Time smaller than a day
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NER and spaCy

spaCy Mmodels extract named entities using the nNer pipeline component
Named entities are available via the doc.ents property

spaCy Will also tag each entity with its entity label ( .1abe1 )
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NER and spaCy

import spacy

nlp = spacy.load("en core web sm")
text = "Albert Einstein was genius."
doc = nlp(text)

print ([ (ent.text, ent.start char,

ent.end char, ent.label ) fgop ent jin doc.ents])

>>> [ ('Albert Einstein', 0, 15, 'PERSON') ]

Dr. V. E. Levent Big Data and Data Mining



NER and spaCy

Doc

import spacy

nlp = spacy.load("en core web sm")
text = "Albert Elinsteln was genius."

doc = nlp(text)

print ([ (token.text, token.ent type ) fopr token in doc])

>>> [ ("Albert', 'PERSON'), ('Einstein',

'"PERSON'), ('was', ''), ('genius', '""), ('.', '"")]
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displaCy

import spacy

spaCy IS equipped with a modern from spacy import displacy

visualizer: displacy
_ _ _ _ _ text = "Albert Einstein was genius."
The displacy entity visualizer highlights

N _ spacy.load ("en core web sm")
named entities and their labels

nlp (text)

displacy.serve (doc, style="ent")

Albert Einstein PERSON was genius.
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POS tagging

POS tags depend on the context, surrounding words and their tags

import spacy
nlp = spacy.load("en core web sm")

text = "My cat will fish for a fish tomorrrow in a fishy way."

print ([ (token.text, token.pos , spacy.explain(token.pos ))

for token in nlp(text)])

| &

h

>>> [("My', 'PRON', 'pronoun’'), ('cat', 'NOUN', 'noun’), ('will', 'AUX', 'auxiliary'),
(*fish', 'VERB', 'verb'), ('for', 'ADP', 'adposition'), ('a', 'DET', ‘'determiner'),
(*fish', 'NOUN', 'noun'), ('tomorrrow', 'NOUN', 'noun'), ('in', 'ADP', ‘'adposition'),

('a" 'DET', 'detel‘lliner"). (lfishyl' ‘ADJ", 'adjective')' ('way', 'NOUN':
(*.*, 'PUNCT', ‘punctuation')]

‘noun'),
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What is the importance of POS?

Word-sense disambiguation (WSD) is the problem of deciding in which sense a word is used
in @ sentence.

Determining the sense of the word can be crucial in machine translation, etc.

Word POS tag Description

Play VERB engage in activity for enjoyment and recreation

Play NOUN a dramatic work for the stage or to be broadcast
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Word-sense disambiguation

import spacy

nlp = spacy.load("en core web sm")

verb_text = "T will fish tomorrow."

noun_ text "T ate fish."

print ([ (token.text, token.pos ) for token in nlp(verb text) if "fish" in token.text],
H\nll)
print ([ (token.text, token.pos ) token nlp (noun text) "fish" token.text])

for in if in

[("fish', 'VERB', 'wverb')]

[('fish', 'NOUN', 'noun') ]
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Dependency parsing

Explores a sentence syntax Links between two tokens Results in a tree

understand differences.

VERB NOUN
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Dependency parsing and spaCy

Dependency label Description

root Root

dobj Direct object

aux Auxiliary
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Dependency parsing and displaCy

doc = nlp("We understand the differences.")

spacy.displacy.serve (doc, style="dep")

nsubj

understand differences.

VERB NOUN
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Dependency parsing and spaCy

doc = nlp("We understand the differences.")

print ([ (token.text, token.dep , spacy.explain(token.dep )) fopr token in doc])

[("We', 'nsubj', 'nominal subject'), ('understand', 'ROOT', 'root'),
('"the', 'det', 'determiner'), ('differences', 'dobj', 'direct object'),

('".'", 'punct', 'punctuation')]
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Word vectors (embeddings)

{"1": 1, "got": 2,

Sentences covid coronavirus

Igot coronavirus
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Word vectors

dog

houses
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Word vectors
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spaCy vocabulary

en core web md

python -m spacy download en_core_web_md

import spacy

nlp = spacy.load("en core web md")

print (nlp.meta["vectors"])

>>> {'width': 300, 'vectors': 20000, 'keys': 514157,

'name': 'en vectors', 'mode': 'default'}
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Word vectors in spaCy

nlp.vocab.strings

import spacy

nlp = spacy.load("en core web md")

like id = nlp.vocab.strings["like"]

print (like id)

>>> 18194338103975822726

.vocab.vectors

print (nlp.vocab.vectors[like id])

>>> array([-2.3334e+00, -1.3695e+00, -1.1330e+00, -6.8461le-01, ...])
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Word vectors visualization

Word vectors allow to understand how words arée groupes

array([ 2.2407 ; 5 .7335 .78466
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Word vectors visualization

import matplotlib.pyplot gs plt
from sklearn.decomposition impopt PCA
import numpy as np

nlp = spacy.load("en core web md")

words = ["wonderful", "horrible",

"apple", "banana", "orange", "watermelon",

'ldog", "Cat"]

word vectors = np.vstack([nlp.vocab.vectors[nlp.vocab.strings[w]] for w in words])
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Word vectors visualizations

pca = PCA(n components=2)

word vectors transformed = pca.fit_transform(word_vectors)

.figure(figsize=(10, 8))

.scatter (word vectors transformed[:, 0], word vectors transformed[:, 1])

word, coord in zlp(words, word vectors transformed) :

X, y = coord

plt.text(x, y, word, size=10)

.show ()
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Analogies and vector operations

wimming
i,\_

"\Jvalked
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Similar words in a vocabulary

import numpy as np
import spacy

nlp = spacy.load("en core web md")

word = "covid"

most similar words = nlp.vocab.vectors.most similar (

np.asarray([nlp.vocab.vectors[nlp.vocab.strings[word]]]), n=b5)

words = [nlp.vocab.strings[w] fopr w in most similar words[0][0]]

print (words)

>>> ['Covi', 'CoVid', 'Covici', 'COVID-19', 'corona']
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The semantic similarity method

What 1s the cheapest flight from Boston to Seattle?
Which airline serves Denver, Pittsburgh and Atlanta?

What kinds of planes are used by American Airlines?
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Similarity score

- Angle 6 close to © Angle 6 close to 90 - Angle 6 close to 180
- Cos(B) close to 1 Cos(B) close to © - Cos(B) close to -1
- Similar vectors Orthogonal vectors - Opposite vectors
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Token similarity

nlp = spacy.load("en core web md")
docl nlp("We eat pizza")

doc?2 nlp("We like to eat pasta")

tokenl = docl[2]
token?2 = doc2[4]

print (f"Similarity between {tokenl} and {token2} = ", round(tokenl.similarity(token2),

>>> Similarity between pizza and pasta = 0.685
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Span similarity

docl nlp("We eat pizza™)

doc?2 nlp ("We like to eat pasta")

spanl docl[1:]
span? doc2[1:]
print (f"Similarity between \"{spanl}\" and \"{span2}\" =

round (spanl.similarity (span2), 3))

>>> Similarity between "eat pizza" and "like to eat pasta" = 0.588

print (f"Similarity between \"{docl[1:]}\" and \"{doc2[3:]}\" =

round(docl[1l:].similarity(doc2[3:]), 3))

>>> Similarity between "eat pizza" and "eat pasta" = 0.936
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Doc similarity
nlp = spacy.load("en core web md")

docl nlp("I like to play basketball")
doc?2 nlp ("I love to play basketball™)

print ("Similarity score :", round(docl.similarity(doc2), 3))

>>> Similarity score : 0.975

Doc
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Sentence similarity

sentences = nlp("What is the cheapest flight from Boston to Seattle?

Which airline serves Denver, Pittsburgh and Atlanta?

What kinds of planes are used by American Airlines?")

keyword = nlp("price")

for i, sentence in enumerate (sentences.sents):

print (f"Similarity score with sentence {i+1}: , round (sentence.similarity (keyword),

>>> Similarity score with sentence 1: 0.26136

Similarity score with sentence 2: (0.14021

Similarity score with sentence 3: (.13885
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spaCy pipelines

Doc

import spacy

nlp spacy.load ("en core web sm")

nlp (example text)
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spaCy pipelines

Input text —»E B Doc with annotated
& | 2 4 entities

print ([ent.text for ent in doc.ents])
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Adding pipes

sentencizer il spaCy

text = " ".join(["This is a test sentence."]*10000)
en _core sm nlp = spacy.load("en core web sm")
start time = time.time ()

doc = en core sm nlp(text)

print (f"Finished processing with en core web sm model in

{round((time.time () - start_time)/60.0 , D)} minutes")

>>> Finished processing with en core web sm model in 0.09332 minutes
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Adding pipes

blank nlp = spacy.blank("en")
blank nlp.add pipe ("sentencizer")
start time = time.time ()

doc = blank nlp(text)

print (f"Finished processing with blank model 1in

{round ((time.time () - start_time)/60.0 , D)} minutes")

>>> Finished processing with blank model in 0.00091 minutes
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Analyzing pipeline components

nlp.analyze pipes()

import spacy

nlp = spacy.load("en core web sm")

analysis = nlp.analyze pipes (pretty=True)

Dr. V. E. Levent Big Data and Data Mining



Analyzing pipeline components

Overview
Requires
tok2vec doc.tensor
tagger token.tag
parser token.dep dep_uas
token.head dep las
token.is sent start dep _las per type
doc.sents sents p
sents_r

sents f

attribute ruler

lemmatizer token.lemma lemma_acc

ner doc.ents ents f
token.ent iob ents p
token.ent type ents r

ents_per_ type

entity linker token.ent kb id doc.ents nel micro f
doc.sents nel micro r
token.ent_iob nel micro p
token.ent type

v No problems found.
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spaCy EntityRuler

EntityRuler Doc
EntityRecognizer

{"label": "ORG", "pattern": "Microsoft"}

{"label": "GPE", "pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}]}
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Adding EntityRuler to spaCy pipeline

.add pipe ()

.add patterns ()

nlp = spacy.blank("en")
entity ruler = nlp.add pipe("entity ruler")
patterns = [{"label": "ORG", "pattern": "Microsoft"},
{"label": "GPE", "pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}]}]

entity ruler.add patterns (patterns)
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Adding EntityRuler to spaCy pipeline

doc = nlp("Microsoft 1s hiring software developer in San

Francisco.") print ([ (ent.text, fgpt.labgp ) ent doc.ents])

[ ('"Microsoft', 'ORG'), ('San Francisco', 'GPE')]
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EntityRuler in action

EntityRuler

spacy.load("en core web sm")

nlp ("Manhattan associates 1s a company 1in the U.S.")

print ([ (ent.text, ent.label ) fgp ent jp doc.ents])

>>> [ ('Manhattan', 'GPE'), ('U.S.', 'GPE')]
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EntityRuler in action

EntityRuler

nlp = spacy.load("en core web sm")
ruler = nlp.add pipe("entity ruler", after='ner')
patterns = [{"label": "ORG", "pattern": [{"lower": "manhattan"}, {"lower": "associates"}]}]

ruler.add patterns (patterns)

doc = nlp("Manhattan associates is a company in the U.S.")

print ([ (ent.text, ent.label ) fop ent jin doc.ents])

>>> [ ('Manhattan', 'GPE'), ('U.S.', 'GPE')]
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EntityRuler in action

EntityRuler

nlp = spacy.load("en core web sm")
ruler = nlp.add pipe("entity ruler", before='ner')
patterns = [{"label": "ORG", "pattern": [{"lower": "manhattan"}, {"lower": "associates"}]}]

ruler.add patterns (patterns)

doc = nlp("Manhattan associates is a company in the U.S.")

print ([ (ent.text, ent.label ) fop ent jin doc.ents])

>>> [ ("Manhattan associates', 'ORG'), ('U.S.', 'GPE')]
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What is RegEx?

Rule-based information extraction (IR) is useful for many NLP tasks

Regular expression (RegEx) is used with complex string matching patterns

RegEx finds and retrieves patterns or replace matching patterns

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam quis purus a odio dapibus

volutpat. Donec sed enim consequat, dapibus nisl at, fermentum tellus. Suspendisse id hendrerit
felis. Sed sit amet hendrerit metus. https://www.att.com| Aliquam erat volutpat. In lobortis
fermentum nulla non ullamcorper.

. www.tellus.coml. Donec elementum nibh ut tellus hendrerit consectetur. 555-555-5555 Aliquam
eget imperdiet diam. Phasellus molestie rhoncus massa nec bibendum.
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RegEx strengths and weaknesses

Pros: Cons:
Enables writing robust rules to retrieve Syntax is challenging for beginners
Information Requires knowledge of all the ways a
Can allow us to find many types of pattern may be mentioned in texts

variance in strings

Runs fast

Supported by programming languages
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RegEx in Python

re

import re

pattern = r" ((\d) {3}-(\d) {3}-(\d) {4})"

text = "Our phone number is 832-123-5555 and their phone number is 425-123-
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RegEx in Python
.finditer ()

iter matches = re.finditer (pattern, text)
for match in iter matches:
start char = match.start()

end char = match.end()

print ("Start character: ", start char, "| End character: ", end char,

"| Matching text: ", text[start char:end char])

>>> Start character: 20 | End character: 32 | Matching text: 832-123-5555
Start character: 59 | End character: 71 | Matching text: 425-123-4567
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RegEx in spaCy

PhraseMatcher

EntityRuler

text = "Our phone number is 832-123-5555 and their phone number is 425-123-4567."
nlp = spacy.blank("en™)
patterns = [{"label": "PHONE NUMBER", "pattern": [{"SHAPE": "ddd"},

{"ORTH": "-"}, {"SHAPE": "ddd"},

{"ORTH": "-"}, {"SHAPE": "dddd"}]}]

ruler = nlp.add pipe("entity ruler")

ruler.add patterns (patterns)

doc = nlp(text) for

>>> [('832-123-5555"', 'PHONE NUMBER'), ('425-123-4567', 'PHONE NUMBER') ]
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Matcher in spaCy

import spacy
from spacy.matcher import Matcher

nlp = spacy.load("en core web sm")

doc = nlp("Good morning, this is our first day on campus.")

matcher = Matcher (nlp.vocab)
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Matcher in spaCy

pattern = [{"LOWER": "good"}, {"LOWER": "morning"}]

matcher.add("morning greeting", [pattern])

matches = matcher (doc)

for match id, start, end in matches:

print ("Start token: ", start, " | End token: ", end,
"| Matched text: ", doc[start:end].text)

>>> Start token: 0 | End token: 2 | Matched text: Good morning
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Matcher extended syntax support

not in

Attribute Value type Description

anytype  Atiributevalueisamemberofalit

any type  Attribute value is not a member of a list
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Matcher extended syntax support

doc = nlp("Good morning and good evening.")

matcher = Matcher (nlp.vocab)
pattern = [{"LOWER": "good"}, {"LOWER": {"IN": ["morning", "evening"]}}]

matcher.add ("morning greeting", [pattern])

matches = matcher (doc)

for match id, start, end in matches:

print ("Start token: ", start, " | End token: ", end,
"| Matched text: ", doc[start:end].text)

>>> Start token: 0 | End token: 2 | Matched text: Good morning

Start token: 3 | End token: 5 | Matched text: good evening
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PhraseMatcher in spaCy

from Spacy.matcher import PhraseMatcher

nlp = spacy.load("en core web sm")
matcher = PhraseMatcher (nlp.vocab)

terms = ["Bill Gates", "John Smith"]
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PhraseMatcher in spaCy

patterns = [nlp.make doc(term) fgp term jp terms]
matcher.add ("PeopleOfInterest", patterns)
doc = nlp("Bill Gates met John Smith for an 1mportant discussion regarding

importance of AI.")

matches = matcher (doc)

for match id, start, end in matches:

print ("Start token: ", start, " | End token: ", end,

"| Matched text: ", doc[start:end].text)

>>> Start token: 0 | End token: 2 | Matched text: Bill Gates

Start token: 3 | End token: 5 | Matched text: John Smith
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PhraseMatcher in spaCy
PhraseMatcher

matcher = PhraseMatcher (nlp.vocab, attr = "LOWER")

terms = ["Government", "Investment"]
patterns = [nlp.make doc(term) <fgp term jn terms]

matcher.add ("InvestmentTerms", patterns)

doc = nlp ("It was 1nteresting to the investment division of the government.")

matcher = PhraseMatcher (nlp.vocab, attr = "SHAPE")
terms = ["110.0.0.0", "101.243.0.0"]

patterns = [nlp.make doc(term) for term in terms]

matcher.add ("IPAddresses", patterns)

doc = nlp("The tracked IP address was 234.135.0.0.")
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Why train spaCy models?

PAST MEDICAL HISTORY: Significant for history of ' pulmonary fibrosis He is status post bilateral lung transplant back

in 2004 because of the pulmonary fibrosis
ALLERGIES: There are no known allergies.

MEDICATIONS: Include multiple medications that are significant for his lung transplant including Prograf, CeliCept , prednisone

omeprazole , Bactrim which he is on chronically, folic acid , vitamin D , Mag-Ox, Toprol-XL,

calcium 500 mg , vitamin B1, Centrum Silver, verapamil , and digoxin
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Why train spaCy models?
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Models performance on our data

Oxford Street GPE

import spacy

nlp = spacy.load("en core web sm")

text = "The car was navigating to the Oxford

Street." doc = nlp(text)

print ([ (ent.text, ent.label ) for ent in doc.ents])

[ ("the Oxford Street', 'ORG')]
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Output labels in spaCy models

in fact, the tnmncw market has the three caoms = most influential names of the retail and tech space — 'Alibaba'| oz
Baidu o=0 | and Tencent resson (collectively touted as 'BAT oeo || ), and is betting big in the global 'Al <ee| in retail
industry space . The three caromae giants which are claimed to have s cut-throat competition with the US. et (in terms of

resources and capital) are positioning themselves to become the ‘future Al esemson platforms’. The trio is also expanding in other

"'an{néé»‘fg countries and investing heavily in the US. cre’ based Al cre startups to leverage the power of Al cee

Backed by such powerful initistives and presence of these conglomerates, the markeat in APAC Al is forecast to be the fastest-
growing One casomaL  , with an anticipated CAGR remson . of 45% semcent over |

PAST MEDICAL HISTORY: Significant for history of "pulmonary fibrosis He is status post bilateral lung transplant back

in 2004 because of the "pulmonary fibrosis
ALLERGIES: There are no known aliergies

MEDICATIONS: Include multiple medications that are significant for his lung transplant including Prograf,  CeliCept , prednisone
Bactrim which he is on chronically, folic acid , ¥itamin D , Mag-Ox, Toprol-XL,

500 mg , vitamin B1, Centrum Silver, verapamil , and  digoxin
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Output labels in spaCy models

If we need custom model training, we follow these steps:

Collect our domain specific data

Annotate our data

Determine to update an existing model or train a model from scratch

Dr. V. E. Levent Big Data and Data Mining



Training steps

1. Annotate and prepare input data
. Initialize the model weight

. Predict a few examples with the current weights

. Use optimizer to calculate weights that improve model performance

2
3
4. Compare prediction with correct answers
5
6. Update weights slightly

7

. Go back to step 3.
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Annotating and preparing data

First step is to prepare training data in required format

After collecting data, we annotate it

Annotation means labeling the intent, entities, etc.

This is an example of annotated data:
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Annotating and preparing data

Here's another example of annotated data:

annotated data = {

"sentence": "Bill Gates visited the SFO Airport.",

"entities": [{"label": "PERSON", "value": "Bill Gates"},

{"label": "LOC", "value": "SFO Airport"}]
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spaCy training data format

Data annotation prepares training data for what we want the model to learn Training

dataset has to be stored as a dictionary:

training data = |
("I will visit you in Austin.", {"entities": [(20, 26, "GPE")11}),
("I'm going to Sam's house.", {"entities": [(13,18, "PERSON"), (19, 24, "GPE")]1}),

("I will go.", {"entities": [1})

]
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Example object data for training

import spacy
from spacy.training jimport Example

nlp spacy.load("en core web sm")

nlp("I will visit you 1in Austin.")

annotations = {"entities": [(20, 26, "GPE")]}

example sentence = Example.from dict (doc, annotations)

print (example sentence.to dict())
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Training steps

1. Annotate and prepare input data
2. Disable other pipeline components
3. Train @ model for a few epochs

4. Evaluate model performance
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Disabling other pipeline components

other pipes = [pipe for pipe in nlp.pipe names if pipe != 'ner']

nlp.disable pipes (*other pipes)
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Model training procedure

optimizer = nlp.create optimizer ()

losses = {}
for i in range (epochs):

random.shuffle (training data)

for text, annotation 1in training data:

doc = nlp.make doc (text)
example = Example.from dict (doc, annotation)

nlp.update ([example], sgd = optimizer, losses=losses)
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Save and load a trained model

ner = nlp.get pipe("ner")

ner.to disk ("<ner model name>")

ner = nlp.create pipe("ner")

ner.from disk ("<ner model name>")

nlp.add pipe(ner, "<ner model name>")
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Model for inference

doc = nlp(text)

entities = [(ent.text, ent.label ) for ent in doc.ents]
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