Big Data and Data Mining

Text Mining

Fenerbahce University

Instructors

Assist. Prof. Vecdi Emre Levent
Office: 311
Email : emre.levent@fbu.edu.tr

Dr. V. E. Levent Big Data and Data Mining

Natural Language Processing (NLP)

A subfield of Artificial Intelligence (AI)

Helps computers to understand human
language

Helps extract insights from unstructured data

Incorporates statistics, machine learning models
and deep learning models

Dr. V. E. Levent Big Data and Data Mining

NLP use cases

Sentiment analysis

Use of computers to determine the underlying subjective tone of a piece of writing

AR,
e &)
|)

\ J
\\//

<=

Positive Negative

“Great service and affordable “This was a horrible experience.
price. | will buy it again.” Not worth the money”

Dr. V. E. Levent Big Data and Data Mining

NLP use cases

Named entity recognition (NER)

Locating and classifying named entities mentioned in unstructured text into pre-defined
categories

Named entities are
real-world objects

such as a person or location

John McCarthy Name)was born on September 4, 1927,

Dr. V. E. Levent Big Data and Data Mining

NLP use cases

Generate human-like responses to text input, such as ChatGPT

Dr. V. E. Levent Big Data and Data Mining

Introduction to spaCy

spaCy is a free, open-source library for NLP in
Python which:

Is designed to build systems for information
extraction

Provides production-ready code for NLP use
cases

Supports 64+ languages
Included Turkish

Is robust and fast and has visualization
libraries

Dr. V. E. Levent Big Data and Data Mining

Install and import spaCy

using the Python package manager pip

spaCy trained models can be downloaded python3 -m spacy download en core web sm

import spacy

Multiple trained models are available for
English language at spacy.io

nlp = spacy.load("en core web sm")

Dr. V. E. Levent Big Data and Data Mining

https://spacy.io/

Read and process text with spaCy

Loaded spacy model en core web sm = nlp oObject

nlp Object converts text into a poc object (container) to store processed text

Tokens

nlp(Text) Linguistic

object annotations

Relationships

Dr. V. E. Levent Big Data and Data Mining

spaCy in action

import spacy
nlp = spacy.load("en core web sm")
text = "A spaCy pipeline object is created."

doc = nlp(text)

print ([token.text for token in doc])

['A', 'spaCy', 'pipeline', 'object', 'is', 'created', '.']

Dr. V. E. Levent Big Data and Data Mining

i Import C
import spacy P ety

= spacy.load("en core web sm") Use spacy.load() to return nlp ,d
= nlp("Here's my spaCy pipeline.") Language Class

The Language object is the text
processing pipeline

Apply nlp() on any texttogeta poc
container

Dr. V. E. Levent Big Data and Data Mining

spaCy NLP pipeline

spaCy applies some processing steps using itS Language class:

Text

Dr. V. E. Levent Big Data and Data Mining

Container objects in spaCy

There are multiple data structures to represent text data in spacy :

Name Description

A container for accessing linguistic annotations of text

Span A slice from a poc object

An individual token, i.e. a word, punctuation, whitespace, etc.

Dr. V. E. Levent Big Data and Data Mining

Pipeline components

The spaCy language processing pipeline always depends on the loaded model and its
capabilities.

Component Name Description

Segment text into tokens and create poc object

Tagger Tagger Assign part-of-speech tags

Reduce the words to their root forms

EntityRecognizer NER Detect and label named entities

Dr. V. E. Levent Big Data and Data Mining

Pipeline components

Each component has unique features to process text
Language

DependencyParser

Sentencizer

Dr. V. E. Levent Big Data and Data Mining

Tokenization

Always the first operation

All the other operations require tokens
Tokens can be words, numbers and punctuation

import spacy

nlp = spacy.load("en core web sm")
doc = nlp("Tokenization splits a sentence into its
tokens.")

print ([token.text for token in doc])

['Tokenization', 'splits', 'a', 'sentence', 'into', 'its', 'tokens', '.']

Dr. V. E. Levent Big Data and Data Mining

Sentence segmentation

DependencyParser

import spacy

nlp = spacy.load("en core web sm")

text = "We are learning NLP. This course introduces spaCy."

doc = nlp(text)
for sent jin doc.sents:

print (sent.text)

We are learning NLP.

This course introduces spaCy.

Dr. V. E. Levent Big Data and Data Mining

Lemmatization

A lemmma is a the base form of a token The lemma of eats and
ate is eat Improves accuracy of language models

import spacy
spacy.load ("en core web sm")

nlp ("We are seeing her after one year.")

print ([(token.text, token.lemma) fgop token jip doc])

[("We', 'we'), ('are', 'be'), ('seeing', 'see'), ('her', 'she'),

('after', 'after'), ('one', 'one'), ('year', 'year'), ('.',

l.l)]

Dr. V. E. Levent Big Data and Data Mining

POS tagging

Categorizing words grammatically, based on function and context within a sentence

POS Description Example

VERB run, eat, ate, take

NOUN Noun man, airplane, tree, flower

Adjective big, old, incompatible, conflicting

ADV Adverb very, down, there, tomorrow

CONJ | Conjunction| and, or, but

Dr. V. E. Levent Big Data and Data Mining

POS tagging with spaCy

POS tagging confirms the meaning of a word
Some words such as watch can be both noun and verb

spaCy captures POS tags in the pos feature of the nip pipeline

spacy.explain () explains a given POS tag

Dr. V. E. Levent Big Data and Data Mining

POS tagging with spaCy

verb sent = "I watch Tv." noun sent = "I left without my watch."

print ([(token.text, token.pos , print ([(token.text, token.pos ,

spacy.explain (token.pos)) spacy.explain (token.pos))

for token 1n nlp(verb sent)]) for token 1n nlp (noun sent)])

[('I', '"PRON', 'pronoun'), [('I', '"PRON', 'pronoun'),
('watch', 'VERB', 'verb'), ('left', 'VERB', 'wverb'),
('TV', 'NOUN', 'noun'), ('"without', 'ADP', 'adposition'),
('".', '"PUNCT', 'punctuation')] ('"my', 'PRON', 'pronoun'),

('watch', 'NOUN', 'noun'),

(".', '"PUNCT', 'punctuation')]

Dr. V. E. Levent Big Data and Data Mining

Named entity recognition

A named entity is a word or phrase that refers to a specific entity with a name

Named-entity recognition (NER) classifies named entities into pre-defined categories

Entity type Description

PERSON Named person or family

ORG Companies, institutions, etc.

GPE Geo-political entity, countries, cities, etc.

LOC Non-GPE locations, mountain ranges, etc.

DATE Absolute or relative dates or periods

TIME Time smaller than a day

Dr. V. E. Levent Big Data and Data Mining

NER and spaCy

spaCy Mmodels extract named entities using the nNer pipeline component
Named entities are available via the doc.ents property

spaCy Will also tag each entity with its entity label (.1abe1)

Dr. V. E. Levent Big Data and Data Mining

NER and spaCy

import spacy

nlp = spacy.load("en core web sm")
text = "Albert Einstein was genius."
doc = nlp(text)

print ([(ent.text, ent.start char,

ent.end char, ent.label) fgop ent jin doc.ents])

>>> [('Albert Einstein', 0, 15, 'PERSON')]

Dr. V. E. Levent Big Data and Data Mining

NER and spaCy

Doc

import spacy

nlp = spacy.load("en core web sm")
text = "Albert Elinsteln was genius."

doc = nlp(text)

print ([(token.text, token.ent type) fopr token in doc])

>>> [("Albert', 'PERSON'), ('Einstein',

'"PERSON'), ('was', ''), ('genius', '""), ('.', '"")]

Dr. V. E. Levent Big Data and Data Mining

displaCy

import spacy

spaCy IS equipped with a modern from spacy import displacy

visualizer: displacy
_ _ _ _ _ text = "Albert Einstein was genius."
The displacy entity visualizer highlights

N _ spacy.load ("en core web sm")
named entities and their labels

nlp (text)

displacy.serve (doc, style="ent")

Albert Einstein PERSON was genius.

Dr. V. E. Levent Big Data and Data Mining

POS tagging

POS tags depend on the context, surrounding words and their tags

import spacy
nlp = spacy.load("en core web sm")

text = "My cat will fish for a fish tomorrrow in a fishy way."

print ([(token.text, token.pos , spacy.explain(token.pos))

for token in nlp(text)])

| &

h

>>> [("My', 'PRON', 'pronoun’'), ('cat', 'NOUN', 'noun’), ('will', 'AUX', 'auxiliary'),
(*fish', 'VERB', 'verb'), ('for', 'ADP', 'adposition'), ('a', 'DET', ‘'determiner'),
(*fish', 'NOUN', 'noun'), ('tomorrrow', 'NOUN', 'noun'), ('in', 'ADP', ‘'adposition'),

('a" 'DET', 'detel‘lliner"). (lfishyl' ‘ADJ", 'adjective')' ('way', 'NOUN':
(*.*, 'PUNCT', ‘punctuation')]

‘noun'),

Dr. V. E. Levent Big Data and Data Mining

What is the importance of POS?

Word-sense disambiguation (WSD) is the problem of deciding in which sense a word is used
in @ sentence.

Determining the sense of the word can be crucial in machine translation, etc.

Word POS tag Description

Play VERB engage in activity for enjoyment and recreation

Play NOUN a dramatic work for the stage or to be broadcast

Dr. V. E. Levent Big Data and Data Mining

Word-sense disambiguation

import spacy

nlp = spacy.load("en core web sm")

verb_text = "T will fish tomorrow."

noun_ text "T ate fish."

print ([(token.text, token.pos) for token in nlp(verb text) if "fish" in token.text],
H\nll)
print ([(token.text, token.pos) token nlp (noun text) "fish" token.text])

for in if in

[("fish', 'VERB', 'wverb')]

[('fish', 'NOUN', 'noun')]

Dr. V. E. Levent Big Data and Data Mining

Dependency parsing

Explores a sentence syntax Links between two tokens Results in a tree

understand differences.

VERB NOUN

Dr. V. E. Levent Big Data and Data Mining

Dependency parsing and spaCy

Dependency label Description

root Root

dobj Direct object

aux Auxiliary

Dr. V. E. Levent Big Data and Data Mining

Dependency parsing and displaCy

doc = nlp("We understand the differences.")

spacy.displacy.serve (doc, style="dep")

nsubj

understand differences.

VERB NOUN

Dr. V. E. Levent Big Data and Data Mining

Dependency parsing and spaCy

doc = nlp("We understand the differences.")

print ([(token.text, token.dep , spacy.explain(token.dep)) fopr token in doc])

[("We', 'nsubj', 'nominal subject'), ('understand', 'ROOT', 'root'),
('"the', 'det', 'determiner'), ('differences', 'dobj', 'direct object'),

('".'", 'punct', 'punctuation')]

Dr. V. E. Levent Big Data and Data Mining

Word vectors (embeddings)

{"1": 1, "got": 2,

Sentences covid coronavirus

Igot coronavirus

Dr. V. E. Levent Big Data and Data Mining

Word vectors

dog

houses

Dr. V. E. Levent Big Data and Data Mining

Word vectors

array([2.2407 : ; .7335 .78466
-0.29269 . £ . 78025 .4899
-9.091849 X & .6337 .5252
-90.22432 ‘ 2 .56551 .9338

1.4973 8 . . 7527 .22585
-90.16969 : : .28248 .6048
-3.5896 . . .12185 . 8633
=1.2525 8 . 97793 .46954
-3.595 : : .8044 . 72183

.40709 .9015 .4768
.0588 .0075977 <9975
.4438 .35869 .918335
.9534 .8209 . 75846
.8438 .96322 . 79868
.6134 .7334 .4964
.4014 .29671 . 4506
.87128 .038133 .6414
.90879 , .1423 « 7525
. 74033 .8337 .8168
.66901 , . 7656 . 73968
dtype=float32)

9.
1.
1.
Q.
Q.
1.
0.
1.
2.
0.
2.

Dr. V. E. Levent Big Data and Data Mining

spaCy vocabulary

en core web md

python -m spacy download en_core_web_md

import spacy

nlp = spacy.load("en core web md")

print (nlp.meta["vectors"])

>>> {'width': 300, 'vectors': 20000, 'keys': 514157,

'name': 'en vectors', 'mode': 'default'}

Dr. V. E. Levent Big Data and Data Mining

Word vectors in spaCy

nlp.vocab.strings

import spacy

nlp = spacy.load("en core web md")

like id = nlp.vocab.strings["like"]

print (like id)

>>> 18194338103975822726

.vocab.vectors

print (nlp.vocab.vectors[like id])

>>> array([-2.3334e+00, -1.3695e+00, -1.1330e+00, -6.8461le-01, ...])

Dr. V. E. Levent Big Data and Data Mining

Word vectors visualization

Word vectors allow to understand how words arée groupes

array([2.2407 ; 5 .7335 .78466
-0.29269 . : .78025 .4899
-0.091849 ; : .6337 .5252
-0.22432 . . .56551 .9338

1.4973 : : 7527 .22585
-0.16969 : : .28248 .6048
-3.5896 : : .12185 .8633
-1.2525 3. : .97793 .46954
-3.595 : ; .8044 .72183
-0.40709 .9015 .4768
-1.0588 .0075977, 2.9975
-2.4438 .35869 .018335

1.9534 .8209 .75846
-1.8438 .90322 .79868
-1.6134 .7334 .4964 ewatermelon

-2.4014 .29671 .4506 .ba nana
-9.87128 .038133 .6414

-0.90879 .1423 .7525
0.74033 , .8337 .8168 eOrange
0.66901 , -1. .7656 .73968

dtype=float;2) .app|e

NONRFOFOORKREO®

Dr. V. E. Levent Big Data and Data Mining

Word vectors visualization

import matplotlib.pyplot gs plt
from sklearn.decomposition impopt PCA
import numpy as np

nlp = spacy.load("en core web md")

words = ["wonderful", "horrible",

"apple", "banana", "orange", "watermelon",

'ldog", "Cat"]

word vectors = np.vstack([nlp.vocab.vectors[nlp.vocab.strings[w]] for w in words])

Dr. V. E. Levent Big Data and Data Mining

Word vectors visualizations

pca = PCA(n components=2)

word vectors transformed = pca.fit_transform(word_vectors)

.figure(figsize=(10, 8))

.scatter (word vectors transformed[:, 0], word vectors transformed[:, 1])

word, coord in zlp(words, word vectors transformed) :

X, y = coord

plt.text(x, y, word, size=10)

.show ()

Dr. V. E. Levent Big Data and Data Mining

Analogies and vector operations

wimming
i,_

"\Jvalked

Dr. V. E. Levent Big Data and Data Mining

Similar words in a vocabulary

import numpy as np
import spacy

nlp = spacy.load("en core web md")

word = "covid"

most similar words = nlp.vocab.vectors.most similar (

np.asarray([nlp.vocab.vectors[nlp.vocab.strings[word]]]), n=b5)

words = [nlp.vocab.strings[w] fopr w in most similar words[0][0]]

print (words)

>>> ['Covi', 'CoVid', 'Covici', 'COVID-19', 'corona']

Dr. V. E. Levent Big Data and Data Mining

The semantic similarity method

What 1s the cheapest flight from Boston to Seattle?
Which airline serves Denver, Pittsburgh and Atlanta?

What kinds of planes are used by American Airlines?

Dr. V. E. Levent Big Data and Data Mining

Similarity score

- Angle 6 close to © Angle 6 close to 90 - Angle 6 close to 180
- Cos(B) close to 1 Cos(B) close to © - Cos(B) close to -1
- Similar vectors Orthogonal vectors - Opposite vectors

Dr. V. E. Levent Big Data and Data Mining

Token similarity

nlp = spacy.load("en core web md")
docl nlp("We eat pizza")

doc?2 nlp("We like to eat pasta")

tokenl = docl[2]
token?2 = doc2[4]

print (f"Similarity between {tokenl} and {token2} = ", round(tokenl.similarity(token2),

>>> Similarity between pizza and pasta = 0.685

Dr. V. E. Levent Big Data and Data Mining

Span similarity

docl nlp("We eat pizza™)

doc?2 nlp ("We like to eat pasta")

spanl docl[1:]
span? doc2[1:]
print (f"Similarity between \"{spanl}\" and \"{span2}\" =

round (spanl.similarity (span2), 3))

>>> Similarity between "eat pizza" and "like to eat pasta" = 0.588

print (f"Similarity between \"{docl[1:]}\" and \"{doc2[3:]}\" =

round(docl[1l:].similarity(doc2[3:]), 3))

>>> Similarity between "eat pizza" and "eat pasta" = 0.936

Dr. V. E. Levent Big Data and Data Mining

Doc similarity
nlp = spacy.load("en core web md")

docl nlp("I like to play basketball")
doc?2 nlp ("I love to play basketball™)

print ("Similarity score :", round(docl.similarity(doc2), 3))

>>> Similarity score : 0.975

Doc

Dr. V. E. Levent Big Data and Data Mining

Sentence similarity

sentences = nlp("What is the cheapest flight from Boston to Seattle?

Which airline serves Denver, Pittsburgh and Atlanta?

What kinds of planes are used by American Airlines?")

keyword = nlp("price")

for i, sentence in enumerate (sentences.sents):

print (f"Similarity score with sentence {i+1}: , round (sentence.similarity (keyword),

>>> Similarity score with sentence 1: 0.26136

Similarity score with sentence 2: (0.14021

Similarity score with sentence 3: (.13885

Dr. V. E. Levent Big Data and Data Mining

5))

spaCy pipelines

Doc

import spacy

nlp spacy.load ("en core web sm")

nlp (example text)

Dr. V. E. Levent Big Data and Data Mining

spaCy pipelines

Input text —»E B Doc with annotated
& | 2 4 entities

print ([ent.text for ent in doc.ents])

Dr. V. E. Levent Big Data and Data Mining

Adding pipes

sentencizer il spaCy

text = " ".join(["This is a test sentence."]*10000)
en _core sm nlp = spacy.load("en core web sm")
start time = time.time ()

doc = en core sm nlp(text)

print (f"Finished processing with en core web sm model in

{round((time.time () - start_time)/60.0 , D)} minutes")

>>> Finished processing with en core web sm model in 0.09332 minutes

Dr. V. E. Levent Big Data and Data Mining

Adding pipes

blank nlp = spacy.blank("en")
blank nlp.add pipe ("sentencizer")
start time = time.time ()

doc = blank nlp(text)

print (f"Finished processing with blank model 1in

{round ((time.time () - start_time)/60.0 , D)} minutes")

>>> Finished processing with blank model in 0.00091 minutes

Dr. V. E. Levent Big Data and Data Mining

Analyzing pipeline components

nlp.analyze pipes()

import spacy

nlp = spacy.load("en core web sm")

analysis = nlp.analyze pipes (pretty=True)

Dr. V. E. Levent Big Data and Data Mining

Analyzing pipeline components

Overview
Requires
tok2vec doc.tensor
tagger token.tag
parser token.dep dep_uas
token.head dep las
token.is sent start dep _las per type
doc.sents sents p
sents_r

sents f

attribute ruler

lemmatizer token.lemma lemma_acc

ner doc.ents ents f
token.ent iob ents p
token.ent type ents r

ents_per_ type

entity linker token.ent kb id doc.ents nel micro f
doc.sents nel micro r
token.ent_iob nel micro p
token.ent type

v No problems found.

Dr. V. E. Levent Big Data and Data Mining

spaCy EntityRuler

EntityRuler Doc
EntityRecognizer

{"label": "ORG", "pattern": "Microsoft"}

{"label": "GPE", "pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}]}

Dr. V. E. Levent Big Data and Data Mining

Adding EntityRuler to spaCy pipeline

.add pipe ()

.add patterns ()

nlp = spacy.blank("en")
entity ruler = nlp.add pipe("entity ruler")
patterns = [{"label": "ORG", "pattern": "Microsoft"},
{"label": "GPE", "pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}]}]

entity ruler.add patterns (patterns)

Dr. V. E. Levent Big Data and Data Mining

Adding EntityRuler to spaCy pipeline

doc = nlp("Microsoft 1s hiring software developer in San

Francisco.") print ([(ent.text, fgpt.labgp) ent doc.ents])

[('"Microsoft', 'ORG'), ('San Francisco', 'GPE')]

Dr. V. E. Levent Big Data and Data Mining

EntityRuler in action

EntityRuler

spacy.load("en core web sm")

nlp ("Manhattan associates 1s a company 1in the U.S.")

print ([(ent.text, ent.label) fgp ent jp doc.ents])

>>> [('Manhattan', 'GPE'), ('U.S.', 'GPE')]

Dr. V. E. Levent Big Data and Data Mining

EntityRuler in action

EntityRuler

nlp = spacy.load("en core web sm")
ruler = nlp.add pipe("entity ruler", after='ner')
patterns = [{"label": "ORG", "pattern": [{"lower": "manhattan"}, {"lower": "associates"}]}]

ruler.add patterns (patterns)

doc = nlp("Manhattan associates is a company in the U.S.")

print ([(ent.text, ent.label) fop ent jin doc.ents])

>>> [('Manhattan', 'GPE'), ('U.S.', 'GPE')]

Dr. V. E. Levent Big Data and Data Mining

EntityRuler in action

EntityRuler

nlp = spacy.load("en core web sm")
ruler = nlp.add pipe("entity ruler", before='ner')
patterns = [{"label": "ORG", "pattern": [{"lower": "manhattan"}, {"lower": "associates"}]}]

ruler.add patterns (patterns)

doc = nlp("Manhattan associates is a company in the U.S.")

print ([(ent.text, ent.label) fop ent jin doc.ents])

>>> [("Manhattan associates', 'ORG'), ('U.S.', 'GPE')]

Dr. V. E. Levent Big Data and Data Mining

What is RegEx?

Rule-based information extraction (IR) is useful for many NLP tasks

Regular expression (RegEx) is used with complex string matching patterns

RegEx finds and retrieves patterns or replace matching patterns

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam quis purus a odio dapibus

volutpat. Donec sed enim consequat, dapibus nisl at, fermentum tellus. Suspendisse id hendrerit
felis. Sed sit amet hendrerit metus. https://www.att.com| Aliquam erat volutpat. In lobortis
fermentum nulla non ullamcorper.

. www.tellus.coml. Donec elementum nibh ut tellus hendrerit consectetur. 555-555-5555 Aliquam
eget imperdiet diam. Phasellus molestie rhoncus massa nec bibendum.

Dr. V. E. Levent Big Data and Data Mining

RegEx strengths and weaknesses

Pros: Cons:
Enables writing robust rules to retrieve Syntax is challenging for beginners
Information Requires knowledge of all the ways a
Can allow us to find many types of pattern may be mentioned in texts

variance in strings

Runs fast

Supported by programming languages

Dr. V. E. Levent Big Data and Data Mining

RegEx in Python

re

import re

pattern = r" ((\d) {3}-(\d) {3}-(\d) {4})"

text = "Our phone number is 832-123-5555 and their phone number is 425-123-

Dr. V. E. Levent Big Data and Data Mining

RegEx in Python
.finditer ()

iter matches = re.finditer (pattern, text)
for match in iter matches:
start char = match.start()

end char = match.end()

print ("Start character: ", start char, "| End character: ", end char,

"| Matching text: ", text[start char:end char])

>>> Start character: 20 | End character: 32 | Matching text: 832-123-5555
Start character: 59 | End character: 71 | Matching text: 425-123-4567

Dr. V. E. Levent Big Data and Data Mining

RegEx in spaCy

PhraseMatcher

EntityRuler

text = "Our phone number is 832-123-5555 and their phone number is 425-123-4567."
nlp = spacy.blank("en™)
patterns = [{"label": "PHONE NUMBER", "pattern": [{"SHAPE": "ddd"},

{"ORTH": "-"}, {"SHAPE": "ddd"},

{"ORTH": "-"}, {"SHAPE": "dddd"}]}]

ruler = nlp.add pipe("entity ruler")

ruler.add patterns (patterns)

doc = nlp(text) for

>>> [('832-123-5555"', 'PHONE NUMBER'), ('425-123-4567', 'PHONE NUMBER')]

Dr. V. E. Levent Big Data and Data Mining

Matcher in spaCy

import spacy
from spacy.matcher import Matcher

nlp = spacy.load("en core web sm")

doc = nlp("Good morning, this is our first day on campus.")

matcher = Matcher (nlp.vocab)

Dr. V. E. Levent Big Data and Data Mining

Matcher in spaCy

pattern = [{"LOWER": "good"}, {"LOWER": "morning"}]

matcher.add("morning greeting", [pattern])

matches = matcher (doc)

for match id, start, end in matches:

print ("Start token: ", start, " | End token: ", end,
"| Matched text: ", doc[start:end].text)

>>> Start token: 0 | End token: 2 | Matched text: Good morning

Dr. V. E. Levent Big Data and Data Mining

Matcher extended syntax support

not in

Attribute Value type Description

anytype Atiributevalueisamemberofalit

any type Attribute value is not a member of a list

Dr. V. E. Levent Big Data and Data Mining

Matcher extended syntax support

doc = nlp("Good morning and good evening.")

matcher = Matcher (nlp.vocab)
pattern = [{"LOWER": "good"}, {"LOWER": {"IN": ["morning", "evening"]}}]

matcher.add ("morning greeting", [pattern])

matches = matcher (doc)

for match id, start, end in matches:

print ("Start token: ", start, " | End token: ", end,
"| Matched text: ", doc[start:end].text)

>>> Start token: 0 | End token: 2 | Matched text: Good morning

Start token: 3 | End token: 5 | Matched text: good evening

Dr. V. E. Levent Big Data and Data Mining

PhraseMatcher in spaCy

from Spacy.matcher import PhraseMatcher

nlp = spacy.load("en core web sm")
matcher = PhraseMatcher (nlp.vocab)

terms = ["Bill Gates", "John Smith"]

Dr. V. E. Levent Big Data and Data Mining

PhraseMatcher in spaCy

patterns = [nlp.make doc(term) fgp term jp terms]
matcher.add ("PeopleOfInterest", patterns)
doc = nlp("Bill Gates met John Smith for an 1mportant discussion regarding

importance of AI.")

matches = matcher (doc)

for match id, start, end in matches:

print ("Start token: ", start, " | End token: ", end,

"| Matched text: ", doc[start:end].text)

>>> Start token: 0 | End token: 2 | Matched text: Bill Gates

Start token: 3 | End token: 5 | Matched text: John Smith

Dr. V. E. Levent Big Data and Data Mining

PhraseMatcher in spaCy
PhraseMatcher

matcher = PhraseMatcher (nlp.vocab, attr = "LOWER")

terms = ["Government", "Investment"]
patterns = [nlp.make doc(term) <fgp term jn terms]

matcher.add ("InvestmentTerms", patterns)

doc = nlp ("It was 1nteresting to the investment division of the government.")

matcher = PhraseMatcher (nlp.vocab, attr = "SHAPE")
terms = ["110.0.0.0", "101.243.0.0"]

patterns = [nlp.make doc(term) for term in terms]

matcher.add ("IPAddresses", patterns)

doc = nlp("The tracked IP address was 234.135.0.0.")

Dr. V. E. Levent Big Data and Data Mining

Why train spaCy models?

PAST MEDICAL HISTORY: Significant for history of ' pulmonary fibrosis He is status post bilateral lung transplant back

in 2004 because of the pulmonary fibrosis
ALLERGIES: There are no known allergies.

MEDICATIONS: Include multiple medications that are significant for his lung transplant including Prograf, CeliCept , prednisone

omeprazole , Bactrim which he is on chronically, folic acid , vitamin D , Mag-Ox, Toprol-XL,

calcium 500 mg , vitamin B1, Centrum Silver, verapamil , and digoxin

Dr. V. E. Levent Big Data and Data Mining

Why train spaCy models?

Dr. V. E. Levent Big Data and Data Mining

Models performance on our data

Oxford Street GPE

import spacy

nlp = spacy.load("en core web sm")

text = "The car was navigating to the Oxford

Street." doc = nlp(text)

print ([(ent.text, ent.label) for ent in doc.ents])

[("the Oxford Street', 'ORG')]

Dr. V. E. Levent Big Data and Data Mining

Output labels in spaCy models

in fact, the tnmncw market has the three caoms = most influential names of the retail and tech space — 'Alibaba'| oz
Baidu o=0 | and Tencent resson (collectively touted as 'BAT oeo ||), and is betting big in the global 'Al <ee| in retail
industry space . The three caromae giants which are claimed to have s cut-throat competition with the US. et (in terms of

resources and capital) are positioning themselves to become the ‘future Al esemson platforms’. The trio is also expanding in other

"'an{néé»‘fg countries and investing heavily in the US. cre’ based Al cre startups to leverage the power of Al cee

Backed by such powerful initistives and presence of these conglomerates, the markeat in APAC Al is forecast to be the fastest-
growing One casomaL , with an anticipated CAGR remson . of 45% semcent over |

PAST MEDICAL HISTORY: Significant for history of "pulmonary fibrosis He is status post bilateral lung transplant back

in 2004 because of the "pulmonary fibrosis
ALLERGIES: There are no known aliergies

MEDICATIONS: Include multiple medications that are significant for his lung transplant including Prograf, CeliCept , prednisone
Bactrim which he is on chronically, folic acid , ¥itamin D , Mag-Ox, Toprol-XL,

500 mg , vitamin B1, Centrum Silver, verapamil , and digoxin

Dr. V. E. Levent Big Data and Data Mining

Output labels in spaCy models

If we need custom model training, we follow these steps:

Collect our domain specific data

Annotate our data

Determine to update an existing model or train a model from scratch

Dr. V. E. Levent Big Data and Data Mining

Training steps

1. Annotate and prepare input data
. Initialize the model weight

. Predict a few examples with the current weights

. Use optimizer to calculate weights that improve model performance

2
3
4. Compare prediction with correct answers
5
6. Update weights slightly

7

. Go back to step 3.

Dr. V. E. Levent Big Data and Data Mining

Annotating and preparing data

First step is to prepare training data in required format

After collecting data, we annotate it

Annotation means labeling the intent, entities, etc.

This is an example of annotated data:

Dr. V. E. Levent Big Data and Data Mining

Annotating and preparing data

Here's another example of annotated data:

annotated data = {

"sentence": "Bill Gates visited the SFO Airport.",

"entities": [{"label": "PERSON", "value": "Bill Gates"},

{"label": "LOC", "value": "SFO Airport"}]

Dr. V. E. Levent Big Data and Data Mining

spaCy training data format

Data annotation prepares training data for what we want the model to learn Training

dataset has to be stored as a dictionary:

training data = |
("I will visit you in Austin.", {"entities": [(20, 26, "GPE")11}),
("I'm going to Sam's house.", {"entities": [(13,18, "PERSON"), (19, 24, "GPE")]1}),

("I will go.", {"entities": [1})

]

Dr. V. E. Levent Big Data and Data Mining

Example object data for training

import spacy
from spacy.training jimport Example

nlp spacy.load("en core web sm")

nlp("I will visit you 1in Austin.")

annotations = {"entities": [(20, 26, "GPE")]}

example sentence = Example.from dict (doc, annotations)

print (example sentence.to dict())

Dr. V. E. Levent Big Data and Data Mining

Training steps

1. Annotate and prepare input data
2. Disable other pipeline components
3. Train @ model for a few epochs

4. Evaluate model performance

Dr. V. E. Levent Big Data and Data Mining

Disabling other pipeline components

other pipes = [pipe for pipe in nlp.pipe names if pipe != 'ner']

nlp.disable pipes (*other pipes)

Dr. V. E. Levent Big Data and Data Mining

Model training procedure

optimizer = nlp.create optimizer ()

losses = {}
for i in range (epochs):

random.shuffle (training data)

for text, annotation 1in training data:

doc = nlp.make doc (text)
example = Example.from dict (doc, annotation)

nlp.update ([example], sgd = optimizer, losses=losses)

Dr. V. E. Levent Big Data and Data Mining

Save and load a trained model

ner = nlp.get pipe("ner")

ner.to disk ("<ner model name>")

ner = nlp.create pipe("ner")

ner.from disk ("<ner model name>")

nlp.add pipe(ner, "<ner model name>")

Dr. V. E. Levent Big Data and Data Mining

Model for inference

doc = nlp(text)

entities = [(ent.text, ent.label) for ent in doc.ents]

Dr. V. E. Levent Big Data and Data Mining

	Slide 1: Big Data and Data Mining
	Slide 2
	Slide 3: Natural Language Processing (NLP)
	Slide 4: NLP use cases
	Slide 5: NLP use cases
	Slide 6
	Slide 7: Introduction to spaCy
	Slide 8: Install and import spaCy
	Slide 9: Read and process text with spaCy
	Slide 10: spaCy in action
	Slide 11: spaCy NLP pipeline
	Slide 12: spaCy NLP pipeline
	Slide 13: Container objects in spaCy
	Slide 14: Pipeline components
	Slide 15: Pipeline components
	Slide 16: Tokenization
	Slide 17: Sentence segmentation
	Slide 18: Lemmatization
	Slide 19: POS tagging
	Slide 20: POS tagging with spaCy
	Slide 21: POS tagging with spaCy
	Slide 22: Named entity recognition
	Slide 23: NER and spaCy
	Slide 24: NER and spaCy
	Slide 25: NER and spaCy
	Slide 26: displaCy
	Slide 27: POS tagging
	Slide 28: What is the importance of POS?
	Slide 29: Word-sense disambiguation
	Slide 30: Dependency parsing Explores a sentence syntax Links between two tokens Results in a tree
	Slide 31: Dependency parsing and spaCy
	Slide 32: Dependency parsing and displaCy
	Slide 33: Dependency parsing and spaCy
	Slide 34: Word vectors (embeddings)
	Slide 35: Word vectors
	Slide 36: Word vectors
	Slide 37: spaCy vocabulary
	Slide 38: Word vectors in spaCy
	Slide 39: Word vectors visualization Word vectors allow to understand how words are grouped
	Slide 40: Word vectors visualization
	Slide 41: Word vectors visualizations
	Slide 42: Analogies and vector operations
	Slide 43: Similar words in a vocabulary
	Slide 44: The semantic similarity method
	Slide 45: Similarity score
	Slide 46: Token similarity
	Slide 47: Span similarity
	Slide 48: Doc similarity
	Slide 49: Sentence similarity
	Slide 50: spaCy pipelines
	Slide 51: spaCy pipelines
	Slide 52: Adding pipes
	Slide 53: Adding pipes
	Slide 54: Analyzing pipeline components
	Slide 55: Analyzing pipeline components
	Slide 56: spaCy EntityRuler
	Slide 57: Adding EntityRuler to spaCy pipeline
	Slide 58: Adding EntityRuler to spaCy pipeline
	Slide 59: EntityRuler in action
	Slide 60: EntityRuler in action
	Slide 61: EntityRuler in action
	Slide 62: What is RegEx?
	Slide 63: RegEx strengths and weaknesses
	Slide 64: RegEx in Python
	Slide 65: RegEx in Python
	Slide 66: RegEx in spaCy
	Slide 67: Matcher in spaCy
	Slide 68: Matcher in spaCy
	Slide 69: Matcher extended syntax support
	Slide 70: Matcher extended syntax support
	Slide 71: PhraseMatcher in spaCy
	Slide 72: PhraseMatcher in spaCy
	Slide 73: PhraseMatcher in spaCy
	Slide 74: Why train spaCy models?
	Slide 75: Why train spaCy models?
	Slide 76: Models performance on our data
	Slide 77: Output labels in spaCy models
	Slide 78: Output labels in spaCy models
	Slide 79: Training steps
	Slide 80: Annotating and preparing data
	Slide 81: Annotating and preparing data
	Slide 82: spaCy training data format Data annotation prepares training data for what we want the model to learn Training dataset has to be stored as a dictionary:
	Slide 83: Example object data for training
	Slide 84: Training steps
	Slide 85: Disabling other pipeline components
	Slide 86: Model training procedure
	Slide 87: Save and load a trained model
	Slide 88: Model for inference

