
Big Data and Data Mining

Fenerbahce University

Text Mining

Big Data and Data MiningDr. V. E. Levent

Assist. Prof. Vecdi Emre Levent

Office: 311

Email : emre.levent@fbu.edu.tr

Instructors

Big Data and Data MiningDr. V. E. Levent

Natural Language Processing (NLP)

NATURAL LANGUAGE PROCESSING WITH SPACY

A subfield of Artificial Intelligence (AI)

Helps computers to understand human

language

Helps extract insights from unstructured data

Incorporates statistics, machine learning models

and deep learning models

Big Data and Data MiningDr. V. E. Levent

NLP use cases

NATURAL LANGUAGE PROCESSING WITH SPACY

Sentiment analysis

Use of computers to determine the underlying subjective tone of a piece of writing

Big Data and Data MiningDr. V. E. Levent

NLP use cases

NATURAL LANGUAGE PROCESSING WITH SPACY

Named entity recognition (NER)

Locating and classifying named entities mentioned in unstructured text into pre-defined

categories

Named entities are

 real-world objects

 such as a person or location

Big Data and Data MiningDr. V. E. Levent

NLP use cases

Generate human-like responses to text input, such as ChatGPT

Big Data and Data MiningDr. V. E. Levent

Introduction to spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

spaCy is a free, open-source library for NLP in

Python which:

Is designed to build systems for information

extraction

Provides production-ready code for NLP use

cases

Supports 64+ languages

 Included Turkish

Is robust and fast and has visualization

libraries

Big Data and Data MiningDr. V. E. Levent

As the first step, spaCy can be installed

using the Python package manager pip

spaCy trained models can be downloaded

Multiple trained models are available for

English language at spacy.io

Install and import spaCy

python -m pip install spacy

python3 -m spacy download en_core_web_sm

spacy

nlp = spacy.load("en_core_web_sm")

https://spacy.io/

Big Data and Data MiningDr. V. E. Levent

Loaded spaCy model en_core_web_sm = nlp object

nlp object converts text into a Doc object (container) to store processed text

Read and process text with spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

Big Data and Data MiningDr. V. E. Levent

spaCy in action

NATURAL LANGUAGE PROCESSING WITH SPACY

Processing a string using spaCy

spacy

nlp = spacy.load("en_core_web_sm")

text = "A spaCy pipeline object is created."

doc = nlp(text)

Tokenization

A Token is defined as the smallest meaningful part of the text.

Tokenization: The process of dividing a text into a list of meaningful tokens

print([token.text token doc])

['A', 'spaCy', 'pipeline', 'object', 'is', 'created', '.']

Big Data and Data MiningDr. V. E. Levent

spaCy NLP pipeline

NATURAL LANGUAGE PROCESSING WITH SPACY

spacy

nlp = spacy.load("en_core_web_sm")

doc = nlp("Here's my spaCy pipeline.")

to return nlp , a

Import spaCy

Use spacy.load()

Language class

The Language object is the text

processing pipeline

Apply nlp() on any text to get a Doc

container

Big Data and Data MiningDr. V. E. Levent

spaCy NLP pipeline

spaCy applies some processing steps using its Language class:

Big Data and Data MiningDr. V. E. Levent

Container objects in spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

Name Description

A container for accessing linguistic annotations of text

A slice from a Doc object

An individual token, i.e. a word, punctuation, whitespace, etc.

There are multiple data structures to represent text data in spaCy :

Big Data and Data MiningDr. V. E. Levent

Component Name Description

Tokenizer Tokenizer Segment text into tokens and create Doc object

Tagger Tagger Assign part-of-speech tags

Lemmatizer Lemmatizer Reduce the words to their root forms

EntityRecognizer NER Detect and label named entities

Pipeline components

NATURAL LANGUAGE PROCESSING WITH SPACY

The spaCy language processing pipeline always depends on the loaded model and its
capabilities.

Big Data and Data MiningDr. V. E. Levent

Pipeline components

NATURAL LANGUAGE PROCESSING WITH SPACY

Each component has unique features to process text

Language

DependencyParser

Sentencizer

Big Data and Data MiningDr. V. E. Levent

Tokenization

NATURAL LANGUAGE PROCESSING WITH SPACY

['Tokenization', 'splits', 'a', 'sentence', 'into', 'its', 'tokens', '.']

Always the first operation

All the other operations require tokens

Tokens can be words, numbers and punctuation

import spacy

nlp = spacy.load("en_core_web_sm")

doc = nlp("Tokenization splits a sentence into its

tokens.")

print([token.text for token in doc])

Big Data and Data MiningDr. V. E. Levent

Sentence segmentation

NATURAL LANGUAGE PROCESSING WITH SPACY

More complex than tokenization

Is a part of DependencyParser component

spacy

nlp = spacy.load("en_core_web_sm")

text = "We are learning NLP. This course introduces spaCy."

doc = nlp(text)

sent doc.sents:

print(sent.text)

We are learning NLP.

This course introduces spaCy.

Big Data and Data MiningDr. V. E. Levent

Lemmatization

NATURAL LANGUAGE PROCESSING WITH SPACY

spacy

nlp = spacy.load("en_core_web_sm")

doc = nlp("We are seeing her after one year.")

print([(token.text, token.lemma_) token doc])

[('We', 'we'), ('are', 'be'), ('seeing', 'see'), ('her', 'she'),

('after', 'after'), ('one', 'one'), ('year', 'year'), ('.',

'.')]

A lemma is a the base form of a token The lemma of eats and
ate is eat Improves accuracy of language models

Big Data and Data MiningDr. V. E. Levent

POS tagging

NATURAL LANGUAGE PROCESSING WITH SPACY

POS Description Example

VERB Verb run, eat, ate, take

NOUN Noun man, airplane, tree, flower

ADJ Adjective big, old, incompatible, conflicting

ADV Adverb very, down, there, tomorrow

CONJ Conjunction and, or, but

Categorizing words grammatically, based on function and context within a sentence

Big Data and Data MiningDr. V. E. Levent

POS tagging confirms the meaning of a word

Some words such as watch can be both noun and verb

spaCy captures POS tags in the pos_ feature of the nlp pipeline

spacy.explain() explains a given POS tag

POS tagging with spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

Big Data and Data MiningDr. V. E. Levent

POS tagging with spaCy

verb_sent = "I watch TV."

print([(token.text, token.pos_,

spacy.explain(token.pos_))

token nlp(verb_sent)])

[('I', 'PRON', 'pronoun'),

('watch', 'VERB', 'verb'),

('TV', 'NOUN', 'noun'),

('.', 'PUNCT', 'punctuation')]

noun_sent = "I left without my watch."

print([(token.text, token.pos_,

spacy.explain(token.pos_))

token nlp(noun_sent)])

[('I', 'PRON', 'pronoun'),

('left', 'VERB', 'verb'),

('without', 'ADP', 'adposition'),

('my', 'PRON', 'pronoun'),

('watch', 'NOUN', 'noun'),

('.', 'PUNCT', 'punctuation')]

Big Data and Data MiningDr. V. E. Levent

Named entity recognition

NATURAL LANGUAGE PROCESSING WITH SPACY

Entity type Description

PERSON Named person or family

ORG Companies, institutions, etc.

GPE Geo-political entity, countries, cities, etc.

LOC Non-GPE locations, mountain ranges, etc.

DATE Absolute or relative dates or periods

TIME Time smaller than a day

A named entity is a word or phrase that refers to a specific entity with a name

Named-entity recognition (NER) classifies named entities into pre-defined categories

Big Data and Data MiningDr. V. E. Levent

NER and spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

spaCy models extract named entities using the NER pipeline component

Named entities are available via the doc.ents property

spaCy will also tag each entity with its entity label (.label_)

Big Data and Data MiningDr. V. E. Levent

NER and spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

spacy

nlp = spacy.load("en_core_web_sm")

text = "Albert Einstein was genius."

doc = nlp(text)

print([(ent.text, ent.start_char,

ent.end_char, ent.label_) ent doc.ents])

>>> [('Albert Einstein', 0, 15, 'PERSON')]

Big Data and Data MiningDr. V. E. Levent

NER and spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

We can also access entity types of each token in a Doc container

spacy

nlp = spacy.load("en_core_web_sm")

text = "Albert Einstein was genius."

doc = nlp(text)

print([(token.text, token.ent_type_) token doc])

>>> [('Albert', 'PERSON'), ('Einstein',

'PERSON'), ('was', ''), ('genius', ''), ('.', '')]

Big Data and Data MiningDr. V. E. Levent

displaCy

spaCy is equipped with a modern

visualizer: displaCy

The displaCy entity visualizer highlights

named entities and their labels

spacy

spacy displacy

text = "Albert Einstein was genius."

nlp = spacy.load("en_core_web_sm")

doc = nlp(text)

displacy.serve(doc, style="ent")

Big Data and Data MiningDr. V. E. Levent

POS tagging

NATURAL LANGUAGE PROCESSING WITH SPACY

POS tags depend on the context, surrounding words and their tags

spacy

nlp = spacy.load("en_core_web_sm")

text = "My cat will fish for a fish tomorrrow in a fishy way."

print([(token.text, token.pos_, spacy.explain(token.pos_))

token nlp(text)])

Big Data and Data MiningDr. V. E. Levent

What is the importance of POS?

NATURAL LANGUAGE PROCESSING WITH SPACY

Word-sense disambiguation (WSD) is the problem of deciding in which sense a word is used

in a sentence.

Determining the sense of the word can be crucial in machine translation, etc.

Big Data and Data MiningDr. V. E. Levent

Word-sense disambiguation

NATURAL LANGUAGE PROCESSING WITH SPACY

spacy

nlp = spacy.load("en_core_web_sm")

verb_text = "I will fish tomorrow."

noun_text = "I ate fish."

print([(token.text, token.pos_) token nlp(verb_text) "fish" token.text],

"\n")

print([(token.text, token.pos_) token nlp(noun_text) "fish" token.text])

[('fish', 'VERB', 'verb')]

[('fish', 'NOUN', 'noun')]

Big Data and Data MiningDr. V. E. Levent

Dependency parsing
Explores a sentence syntax Links between two tokens Results in a tree

NATURAL LANGUAGE PROCESSING WITH SPACY

Big Data and Data MiningDr. V. E. Levent

Dependency parsing and spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

Dependency label Description

nsubj Nominal subject

root Root

det Determiner

dobj Direct object

aux Auxiliary

Dependency label describes the type of syntactic relation between two tokens

Big Data and Data MiningDr. V. E. Levent

Dependency parsing and displaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

displaCy can draw dependency trees

doc = nlp("We understand the differences.")

spacy.displacy.serve(doc, style="dep")

Big Data and Data MiningDr. V. E. Levent

Dependency parsing and spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

.dep_ attribute to access the dependency label of a token

doc = nlp("We understand the differences.")

print([(token.text, token.dep_, spacy.explain(token.dep_)) token doc])

[('We', 'nsubj', 'nominal subject'), ('understand', 'ROOT', 'root'),

('the', 'det', 'determiner'), ('differences', 'dobj', 'direct object'),

('.', 'punct', 'punctuation')]

Big Data and Data MiningDr. V. E. Levent

Wordvectors (embeddings)

NATURAL LANGUAGE PROCESSING WITH SPACY

Sentences I got covid coronavirus

I got covid 1 2 3

Igot coronavirus 1 2 4

Numerical representations of words

Bag of words method: {"I": 1, "got": 2, ...}

Older methods do not allow to understand the meaning:

Big Data and Data MiningDr. V. E. Levent

Wordvectors

NATURAL LANGUAGE PROCESSING WITH SPACY

A pre-defined number of dimensions

Considers word frequencies and the presence of other words in similar contexts

Big Data and Data MiningDr. V. E. Levent

Wordvectors

NATURAL LANGUAGE PROCESSING WITH SPACY

Multiple approaches to produce word vectors:

word2vec, Glove, fastText and transformer-based architectures

An example of a word vector:

Big Data and Data MiningDr. V. E. Levent

spaCy vocabulary

NATURAL LANGUAGE PROCESSING WITH SPACY

A part of many spaCy models.

en_core_web_md has 300-dimensional vectors for 20,000 words.

spacy

nlp = spacy.load("en_core_web_md")

print(nlp.meta["vectors"])

>>> {'width': 300, 'vectors': 20000, 'keys': 514157,

'name': 'en_vectors', 'mode': 'default'}

python -m spacy download en_core_web_md

Big Data and Data MiningDr. V. E. Levent

Wordvectors in spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

nlp.vocab : to access vocabulary (Vocab class)

nlp.vocab.strings : to access word IDs in a vocabulary

spacy

nlp = spacy.load("en_core_web_md")

like_id = nlp.vocab.strings["like"]

print(like_id)

>>> 18194338103975822726

.vocab.vectors : to access words vectors of a model or a word, given its corresponding ID

print(nlp.vocab.vectors[like_id])

>>> array([-2.3334e+00, -1.3695e+00, -1.1330e+00, -6.8461e-01, ...])

Big Data and Data MiningDr. V. E. Levent

Wordvectors visualization
Word vectors allow to understand how words are grouped

NATURAL LANGUAGE PROCESSING WITH SPACY

Principal Component Analysis projects

word vectors into a two-dimensional space

Big Data and Data MiningDr. V. E. Levent

Wordvectors visualization

NATURAL LANGUAGE PROCESSING WITH SPACY

Import required libraries and a spaCy model.

PCA

matplotlib.pyplot plt

sklearn.decomposition

numpy np

nlp = spacy.load("en_core_web_md")

Extract word vectors for a given list of words and stack them vertically.

words = ["wonderful", "horrible",

"apple", "banana", "orange", "watermelon",

"dog", "cat"]

word_vectors = np.vstack([nlp.vocab.vectors[nlp.vocab.strings[w]] w words])

Big Data and Data MiningDr. V. E. Levent

Wordvectors visualizations

NATURAL LANGUAGE PROCESSING WITH SPACY

Extract two principal components using PCA.

pca = PCA(n_components=2)

word_vectors_transformed = pca.fit_transform(word_vectors)

Visualize the scatter plot of transformed vectors.

plt.figure(figsize=(10, 8))

plt.scatter(word_vectors_transformed[:, 0], word_vectors_transformed[:, 1])

word, coord zip(words, word_vectors_transformed):

x, y = coord

plt.text(x, y, word, size=10)

plt.show()

Big Data and Data MiningDr. V. E. Levent

Analogies and vector operations

NATURAL LANGUAGE PROCESSING WITH SPACY

A semantic relationship between a pair of words.

Word embeddings generate analogies such as gender and tense:

queen - woman +man =king

Big Data and Data MiningDr. V. E. Levent

Similar words in a vocabulary

NATURAL LANGUAGE PROCESSING WITH SPACY

spaCy find semantically similar terms to a given term

numpy np

spacy

nlp = spacy.load("en_core_web_md")

word = "covid"

most_similar_words = nlp.vocab.vectors.most_similar(

np.asarray([nlp.vocab.vectors[nlp.vocab.strings[word]]]), n=5)

w most_similar_words[0][0]]words = [nlp.vocab.strings[w]

print(words)

>>> ['Covi', 'CoVid', 'Covici', 'COVID-19', 'corona']

Big Data and Data MiningDr. V. E. Levent

The semantic similarity method

NATURAL LANGUAGE PROCESSING WITH SPACY

Process of analyzing texts to identify similarities

Categorizes texts into predefined categories or detect relevant texts

Similarity score measures how similar two pieces of text are

What is the cheapest flight from Boston to Seattle?

Which airline serves Denver, Pittsburgh and Atlanta?

What kinds of planes are used by American Airlines?

Big Data and Data MiningDr. V. E. Levent

Similarity score

NATURAL LANGUAGE PROCESSING WITH SPACY

A metric defined over texts

To measure similarity use Cosine similarity and word vectors

Cosine similarity is any number between 0 and 1

Big Data and Data MiningDr. V. E. Levent

Token similarity

NATURAL LANGUAGE PROCESSING WITH SPACY

spaCy calculates similarity scores between Token objects

nlp = spacy.load("en_core_web_md")

doc1 = nlp("We eat pizza")

doc2 = nlp("We like to eat pasta")

token1 = doc1[2]

token2 = doc2[4]

print(f"Similarity between {token1} and {token2} = ", round(token1.similarity(token2), 3))

>>> Similarity between pizza and pasta = 0.685

Big Data and Data MiningDr. V. E. Levent

Span similarity

NATURAL LANGUAGE PROCESSING WITH SPACY

spaCy calculates semantic similarity of two given Span objects

doc1 = nlp("We eat pizza")

doc2 = nlp("We like to eat pasta")

span1 = doc1[1:]

span2 = doc2[1:]

print(f"Similarity between \"{span1}\" and \"{span2}\" = ",

round(span1.similarity(span2), 3))

>>> Similarity between "eat pizza" and "like to eat pasta" = 0.588

print(f"Similarity between \"{doc1[1:]}\" and \"{doc2[3:]}\" = ",

round(doc1[1:].similarity(doc2[3:]), 3))

>>> Similarity between "eat pizza" and "eat pasta" = 0.936

Big Data and Data MiningDr. V. E. Levent

Doc similarity

NATURAL LANGUAGE PROCESSING WITH SPACY

spaCy calculates the similarity scores between two documents

nlp = spacy.load("en_core_web_md")

doc1 = nlp("I like to play basketball")

doc2 = nlp("I love to play basketball")

print("Similarity score :", round(doc1.similarity(doc2), 3))

>>> Similarity score : 0.975

High cosine similarity shows highly semantically similar contents

Doc vectors default to an average of word vectors

Big Data and Data MiningDr. V. E. Levent

Sentence similarity

NATURAL LANGUAGE PROCESSING WITH SPACY

spaCy finds relevant content to a given keyword

Finding similar customer questions to the word price:

sentences = nlp("What is the cheapest flight from Boston to Seattle?

Which airline serves Denver, Pittsburgh and Atlanta?

What kinds of planes are used by American Airlines?")

keyword = nlp("price")

i, sentence enumerate(sentences.sents):

print(f"Similarity score with sentence {i+1}: ", round(sentence.similarity(keyword), 5))

>>> Similarity score with sentence 1: 0.26136

Similarity score with sentence 2:

Similarity score with sentence 3:

0.14021

0.13885

Big Data and Data MiningDr. V. E. Levent

spaCy pipelines

NATURAL LANGUAGE PROCESSING WITH SPACY

spaCy first tokenizes the text to produce a Doc object

The Doc is processed in several different steps of processing pipeline

spacy

nlp = spacy.load("en_core_web_sm")

doc = nlp(example_text)

Big Data and Data MiningDr. V. E. Levent

spaCy pipelines

NATURAL LANGUAGE PROCESSING WITH SPACY

A pipeline is a sequence of pipes, or actors on data

A spaCy NER pipeline:

Tokenization

Named entity identification

Named entity classification

print([ent.text ent doc.ents])

Big Data and Data MiningDr. V. E. Levent

Adding pipes

NATURAL LANGUAGE PROCESSING WITH SPACY

sentencizer : spaCy pipeline component for sentence segmentation.

text = " ".join(["This is a test sentence."]*10000)

en_core_sm_nlp = spacy.load("en_core_web_sm")

start_time = time.time()

doc = en_core_sm_nlp(text)

print(f"Finished processing with en_core_web_sm model in

{round((time.time() - start_time)/60.0 , 5)} minutes")

>>> Finished processing with en_core_web_sm model in 0.09332 minutes

Big Data and Data MiningDr. V. E. Levent

Adding pipes

NATURAL LANGUAGE PROCESSING WITH SPACY

Create a blank model and add a sentencizer pipe:

blank_nlp = spacy.blank("en")

blank_nlp.add_pipe("sentencizer")

start_time = time.time()

doc = blank_nlp(text)

print(f"Finished processing with blank model in

{round((time.time() - start_time)/60.0 , 5)} minutes")

>>> Finished processing with blank model in 0.00091 minutes

Big Data and Data MiningDr. V. E. Levent

Analyzing pipeline components

NATURAL LANGUAGE PROCESSING WITH SPACY

nlp.analyze_pipes() analyzes a spaCy pipeline to determine:

Attributes that pipeline components set

Scores a component produces during training

Presence of all required attributes

Setting pretty to True will print a table instead of only returning the structured data.

spacy

nlp = spacy.load("en_core_web_sm")

analysis = nlp.analyze_pipes(pretty=True)

Big Data and Data MiningDr. V. E. Levent

Analyzing pipeline components

NATURAL LANGUAGE PROCESSING WITH SPACY

Big Data and Data MiningDr. V. E. Levent

spaCy EntityRuler

NATURAL LANGUAGE PROCESSING WITH SPACY

EntityRuler adds named-entities to a Doc container

It can be used on its own or combined with EntityRecognizer

Phrase entity patterns for exact string matches (string):

{"label": "ORG", "pattern": "Microsoft"}

Token entity patterns with one dictionary describing one token (list):

{"label": "GPE", "pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}]}

Big Data and Data MiningDr. V. E. Levent

Adding EntityRuler to spaCy pipeline

NATURAL LANGUAGE PROCESSING WITH SPACY

Using .add_pipe() method

List of patterns can be added using .add_patterns() method

nlp = spacy.blank("en")

entity_ruler = nlp.add_pipe("entity_ruler")

patterns = [{"label": "ORG", "pattern": "Microsoft"},

{"label": "GPE", "pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}]}]

entity_ruler.add_patterns(patterns)

Big Data and Data MiningDr. V. E. Levent

Adding EntityRuler to spaCy pipeline

NATURAL LANGUAGE PROCESSING WITH SPACY

.ents store the results of an EntityLinker component

doc = nlp("Microsoft is hiring software developer in San

Francisco.") print([(ent.text, ent.label_) ent doc.ents])

[('Microsoft', 'ORG'), ('San Francisco', 'GPE')]

Big Data and Data MiningDr. V. E. Levent

EntityRuler in action

NATURAL LANGUAGE PROCESSING WITH SPACY

Integrates with spaCy pipeline components

Enhances the named-entity recognizer

spaCy model without EntityRuler :

nlp = spacy.load("en_core_web_sm")

doc = nlp("Manhattan associates is a company in the U.S.")

print([(ent.text, ent.label_) ent doc.ents])

>>> [('Manhattan', 'GPE'), ('U.S.', 'GPE')]

Big Data and Data MiningDr. V. E. Levent

EntityRuler in action

NATURAL LANGUAGE PROCESSING WITH SPACY

EntityRuler added after existing ner component:

nlp = spacy.load("en_core_web_sm")

ruler = nlp.add_pipe("entity_ruler", after='ner')

patterns = [{"label": "ORG", "pattern": [{"lower": "manhattan"}, {"lower": "associates"}]}]

ruler.add_patterns(patterns)

doc = nlp("Manhattan associates is a company in the U.S.")

print([(ent.text, ent.label_) ent doc.ents])

>>> [('Manhattan', 'GPE'), ('U.S.', 'GPE')]

Big Data and Data MiningDr. V. E. Levent

EntityRuler in action

NATURAL LANGUAGE PROCESSING WITH SPACY

EntityRuler added before existing ner component:

nlp = spacy.load("en_core_web_sm")

ruler = nlp.add_pipe("entity_ruler", before='ner')

patterns = [{"label": "ORG", "pattern": [{"lower": "manhattan"}, {"lower": "associates"}]}]

ruler.add_patterns(patterns)

doc = nlp("Manhattan associates is a company in the U.S.")

print([(ent.text, ent.label_) ent doc.ents])

>>> [('Manhattan associates', 'ORG'), ('U.S.', 'GPE')]

Big Data and Data MiningDr. V. E. Levent

What is RegEx?

Rule-based information extraction (IR) is useful for many NLP tasks

Regular expression (RegEx) is used with complex string matching patterns

RegEx finds and retrieves patterns or replace matching patterns

Big Data and Data MiningDr. V. E. Levent

RegEx strengths and weaknesses

NATURAL LANGUAGE PROCESSING WITH SPACY

Pros: Cons:

Enables writing robust rules to retrieve

information

Can allow us to find many types of

variance in strings

Runs fast

Supported by programming languages

Syntax is challenging for beginners

Requires knowledge of all the ways a

pattern may be mentioned in texts

Big Data and Data MiningDr. V. E. Levent

RegEx in Python

NATURAL LANGUAGE PROCESSING WITH SPACY

Python comes prepackaged with a RegEx library, re .

The first step in using re package is to define a pattern .

The resulting pattern is used to find matching content.

re

pattern = r"((\d){3}-(\d){3}-(\d){4})"

text = "Our phone number is 832-123-5555 and their phone number is 425-123-

4567."

Big Data and Data MiningDr. V. E. Levent

RegEx in Python

NATURAL LANGUAGE PROCESSING WITH SPACY

packageWe use .finditer() method from re

iter_matches = re.finditer(pattern, text)

match iter_matches:

start_char = match.start()

end_char = match.end()

print ("Start character: ", start_char, "| End character: ", end_char,

"| Matching text: ", text[start_char:end_char])

>>> Start character: 20 | End character: 32 | Matching text: 832-123-5555

Start character: 59 | End character: 71 | Matching text: 425-123-4567

Big Data and Data MiningDr. V. E. Levent

RegEx in spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

RegEx in three pipeline components: Matcher , PhraseMatcher and EntityRuler

.

text = "Our phone number is 832-123-5555 and their phone number is 425-123-4567."

nlp = spacy.blank("en")

patterns = [{"label": "PHONE_NUMBER", "pattern": [{"SHAPE": "ddd"},

{"ORTH": "-"}, {"SHAPE": "ddd"},

{"ORTH": "-"}, {"SHAPE": "dddd"}]}]

ruler = nlp.add_pipe("entity_ruler")

ruler.add_patterns(patterns)

doc = nlp(text)

print ([(ent.text, ent.label_) ent doc.ents])

>>> [('832-123-5555', 'PHONE_NUMBER'), ('425-123-4567', 'PHONE_NUMBER')]

Big Data and Data MiningDr. V. E. Levent

Matcher in spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

RegEx patterns can be complex, difficult to read and debug.

spaCy provides a readable and production-level alternative, the Matcher class.

spacy

spacy.matcher Matcher

nlp = spacy.load("en_core_web_sm")

doc = nlp("Good morning, this is our first day on campus.")

matcher = Matcher(nlp.vocab)

Big Data and Data MiningDr. V. E. Levent

Matcher in spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

Matching output include start and end token indices of the matched pattern.

pattern = [{"LOWER": "good"}, {"LOWER": "morning"}]

matcher.add("morning_greeting", [pattern])

matches = matcher(doc)

match_id, start, end matches:

print("Start token: ", start, " | End token: ", end,

"| Matched text: ", doc[start:end].text)

>>> Start token: 0 | End token: 2 | Matched text: Good morning

Big Data and Data MiningDr. V. E. Levent

Matcher extended syntax support

NATURAL LANGUAGE PROCESSING WITH SPACY

Allows operators in defining the matching patterns.

Similar operators to Python's in , not in and comparison operators

Attribute Value type Description

IN any type Attribute value is a member of a list

NOT_IN any type Attribute value is not a member of a list

== , >= , <= , > , < int, float Comparison operators for equality or inequality
checks

Big Data and Data MiningDr. V. E. Levent

Matcher extended syntax support

NATURAL LANGUAGE PROCESSING WITH SPACY

Using IN operator to match both good morning and good evening

doc = nlp("Good morning and good evening.")

matcher = Matcher(nlp.vocab)

pattern = [{"LOWER": "good"}, {"LOWER": {"IN": ["morning", "evening"]}}]

matcher.add("morning_greeting", [pattern])

matches = matcher(doc)

The output of matching using IN operator

match_id, start, end matches:

print("Start token: ", start, " | End token: ", end,

"| Matched text: ", doc[start:end].text)

>>> Start token: 0 | End token: 2 | Matched text: Good morning

Start token: 3 | End token: 5 | Matched text: good evening

Big Data and Data MiningDr. V. E. Levent

PhraseMatcher in spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

PhraseMatcher class matches a long list of phrases in a given text.

spacy.matcher PhraseMatcher

nlp = spacy.load("en_core_web_sm")

matcher = PhraseMatcher(nlp.vocab)

terms = ["Bill Gates", "John Smith"]

Big Data and Data MiningDr. V. E. Levent

PhraseMatcher in spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

PhraseMatcher outputs include start and end token indices of the matched pattern

patterns = [nlp.make_doc(term) term terms]

matcher.add("PeopleOfInterest", patterns)

doc = nlp("Bill Gates met John Smith for an important discussion regarding

importance of AI.")

matches = matcher(doc)

match_id, start, end matches:

print("Start token: ", start, " | End token: ", end,

"| Matched text: ", doc[start:end].text)

>>> Start token: 0 | End token: 2 | Matched text: Bill Gates

Start token: 3 | End token: 5 | Matched text: John Smith

Big Data and Data MiningDr. V. E. Levent

PhraseMatcher in spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

We can use attr argument of the PhraseMatcher

matcher = PhraseMatcher(nlp.vocab, attr = "LOWER")

terms = ["Government", "Investment"]

class

patterns = [nlp.make_doc(term) term terms]

matcher.add("InvestmentTerms", patterns)

doc = nlp("It was interesting to the investment division of the government.")

matcher = PhraseMatcher(nlp.vocab, attr = "SHAPE")

terms = ["110.0.0.0", "101.243.0.0"]

patterns = [nlp.make_doc(term) term terms]

matcher.add("IPAddresses", patterns)

doc = nlp("The tracked IP address was 234.135.0.0.")

Big Data and Data MiningDr. V. E. Levent

Why train spaCy models?

NATURAL LANGUAGE PROCESSING WITH SPACY

Go a long way for general NLP use cases

But may not have seen specific domains data during their training, e.g.

Twitter data

Medical data

Big Data and Data MiningDr. V. E. Levent

Why train spaCy models?

NATURAL LANGUAGE PROCESSING WITH SPACY

Better results on your specific domain

Essential for domain specific text classification

Before start training, ask the following questions:

Do spaCy models perform well enough on our data?

Does our domain include many labels that are absent in spaCy models?

Big Data and Data MiningDr. V. E. Levent

Models performance on our data

NATURAL LANGUAGE PROCESSING WITH SPACY

Do spaCy models perform well enough on our data?

Oxford Street is not correctly classified with a GPE label:

spacy

nlp = spacy.load("en_core_web_sm")

text = "The car was navigating to the Oxford

Street." doc = nlp(text)

print([(ent.text, ent.label_) ent doc.ents])

[('the Oxford Street', 'ORG')]

Big Data and Data MiningDr. V. E. Levent

Output labels in spaCy models

NATURAL LANGUAGE PROCESSING WITH SPACY

Does our domain include many labels that are absent in spaCy models?

Big Data and Data MiningDr. V. E. Levent

Output labels in spaCy models

NATURAL LANGUAGE PROCESSING WITH SPACY

If we need custom model training, we follow these steps:

Collect our domain specific data

Annotate our data

Determine to update an existing model or train a model from scratch

Big Data and Data MiningDr. V. E. Levent

Training steps

NATURAL LANGUAGE PROCESSING WITH SPACY

1. Annotate and prepare input data

2. Initialize the model weight

3. Predict a few examples with the current weights

4. Compare prediction with correct answers

5. Use optimizer to calculate weights that improve model performance

6. Update weights slightly

7. Go back to step 3.

Big Data and Data MiningDr. V. E. Levent

Annotating and preparing data

NATURAL LANGUAGE PROCESSING WITH SPACY

First step is to prepare training data in required format

After collecting data, we annotate it

Annotation means labeling the intent, entities, etc.

This is an example of annotated data:

annotated_data = {

"sentence": "An antiviral drugs used against influenza is neuraminidase inhibitors.",

"entities": {

"label": "Medicine",

"value": "neuraminidase inhibitors",

}

}

Big Data and Data MiningDr. V. E. Levent

Annotating and preparing data

NATURAL LANGUAGE PROCESSING WITH SPACY

Here's another example of annotated data:

annotated_data = {

"sentence": "Bill Gates visited the SFO Airport.",

"entities": [{"label": "PERSON", "value": "Bill Gates"},

{"label": "LOC", "value": "SFO Airport"}]

}

Big Data and Data MiningDr. V. E. Levent

spaCy training data format
Data annotation prepares training data for what we want the model to learn Training

dataset has to be stored as a dictionary:

NATURAL LANGUAGE PROCESSING WITH SPACY

training_data = [

("I will visit you in Austin.", {"entities": [(20, 26, "GPE")]}),

("I'm going to Sam's house.", {"entities": [(13,18, "PERSON"), (19, 24, "GPE")]}),

("I will go.", {"entities": []})

]

Three example pairs:

Each example pair includes a sentence as the first element

Pair's second element is list of annotated entities and start and end characters

Big Data and Data MiningDr. V. E. Levent

Example object data for training

NATURAL LANGUAGE PROCESSING WITH SPACY

We cannot feed the raw text directly to spaCy

We need to create an Example object for each training example

spacy

spacy.training Example

nlp = spacy.load("en_core_web_sm")

doc = nlp("I will visit you in Austin.")

annotations = {"entities": [(20, 26, "GPE")]}

example_sentence = Example.from_dict(doc, annotations)

print(example_sentence.to_dict())

Big Data and Data MiningDr. V. E. Levent

Training steps

NATURAL LANGUAGE PROCESSING WITH SPACY

1. Annotate and prepare input data

2. Disable other pipeline components

3. Train a model for a few epochs

4. Evaluate model performance

Big Data and Data MiningDr. V. E. Levent

Disabling other pipeline components

NATURAL LANGUAGE PROCESSING WITH SPACY

Disable all pipeline components except NER:

other_pipes = [pipe pipe nlp.pipe_names pipe != 'ner']

nlp.disable_pipes(*other_pipes)

Big Data and Data MiningDr. V. E. Levent

Model training procedure

NATURAL LANGUAGE PROCESSING WITH SPACY

Go over the training set several times; one iteration is called an

In each epoch, update the weights of the model with a small number.

Optimizers update the model weights.

.

optimizer = nlp.create_optimizer()

losses = {}

i range(epochs):

random.shuffle(training_data)

text, annotation training_data:

doc = nlp.make_doc(text)

example = Example.from_dict(doc, annotation)

nlp.update([example], sgd = optimizer, losses=losses)

Big Data and Data MiningDr. V. E. Levent

Save and load a trained model

NATURAL LANGUAGE PROCESSING WITH SPACY

Save a trained NER model:

ner = nlp.get_pipe("ner")

ner.to_disk("<ner model name>")

Load the saved model:

ner = nlp.create_pipe("ner")

ner.from_disk("<ner model name>")

nlp.add_pipe(ner, "<ner model name>")

Big Data and Data MiningDr. V. E. Levent

Model for inference

NATURAL LANGUAGE PROCESSING WITH SPACY

Use a saved model at inference.

Apply NER model and store tuples of (entity text, entity label):

doc = nlp(text)

entities = [(ent.text, ent.label_) ent doc.ents]

	Slide 1: Big Data and Data Mining
	Slide 2
	Slide 3: Natural Language Processing (NLP)
	Slide 4: NLP use cases
	Slide 5: NLP use cases
	Slide 6
	Slide 7: Introduction to spaCy
	Slide 8: Install and import spaCy
	Slide 9: Read and process text with spaCy
	Slide 10: spaCy in action
	Slide 11: spaCy NLP pipeline
	Slide 12: spaCy NLP pipeline
	Slide 13: Container objects in spaCy
	Slide 14: Pipeline components
	Slide 15: Pipeline components
	Slide 16: Tokenization
	Slide 17: Sentence segmentation
	Slide 18: Lemmatization
	Slide 19: POS tagging
	Slide 20: POS tagging with spaCy
	Slide 21: POS tagging with spaCy
	Slide 22: Named entity recognition
	Slide 23: NER and spaCy
	Slide 24: NER and spaCy
	Slide 25: NER and spaCy
	Slide 26: displaCy
	Slide 27: POS tagging
	Slide 28: What is the importance of POS?
	Slide 29: Word-sense disambiguation
	Slide 30: Dependency parsing Explores a sentence syntax Links between two tokens Results in a tree
	Slide 31: Dependency parsing and spaCy
	Slide 32: Dependency parsing and displaCy
	Slide 33: Dependency parsing and spaCy
	Slide 34: Word vectors (embeddings)
	Slide 35: Word vectors
	Slide 36: Word vectors
	Slide 37: spaCy vocabulary
	Slide 38: Word vectors in spaCy
	Slide 39: Word vectors visualization Word vectors allow to understand how words are grouped
	Slide 40: Word vectors visualization
	Slide 41: Word vectors visualizations
	Slide 42: Analogies and vector operations
	Slide 43: Similar words in a vocabulary
	Slide 44: The semantic similarity method
	Slide 45: Similarity score
	Slide 46: Token similarity
	Slide 47: Span similarity
	Slide 48: Doc similarity
	Slide 49: Sentence similarity
	Slide 50: spaCy pipelines
	Slide 51: spaCy pipelines
	Slide 52: Adding pipes
	Slide 53: Adding pipes
	Slide 54: Analyzing pipeline components
	Slide 55: Analyzing pipeline components
	Slide 56: spaCy EntityRuler
	Slide 57: Adding EntityRuler to spaCy pipeline
	Slide 58: Adding EntityRuler to spaCy pipeline
	Slide 59: EntityRuler in action
	Slide 60: EntityRuler in action
	Slide 61: EntityRuler in action
	Slide 62: What is RegEx?
	Slide 63: RegEx strengths and weaknesses
	Slide 64: RegEx in Python
	Slide 65: RegEx in Python
	Slide 66: RegEx in spaCy
	Slide 67: Matcher in spaCy
	Slide 68: Matcher in spaCy
	Slide 69: Matcher extended syntax support
	Slide 70: Matcher extended syntax support
	Slide 71: PhraseMatcher in spaCy
	Slide 72: PhraseMatcher in spaCy
	Slide 73: PhraseMatcher in spaCy
	Slide 74: Why train spaCy models?
	Slide 75: Why train spaCy models?
	Slide 76: Models performance on our data
	Slide 77: Output labels in spaCy models
	Slide 78: Output labels in spaCy models
	Slide 79: Training steps
	Slide 80: Annotating and preparing data
	Slide 81: Annotating and preparing data
	Slide 82: spaCy training data format Data annotation prepares training data for what we want the model to learn Training dataset has to be stored as a dictionary:
	Slide 83: Example object data for training
	Slide 84: Training steps
	Slide 85: Disabling other pipeline components
	Slide 86: Model training procedure
	Slide 87: Save and load a trained model
	Slide 88: Model for inference

