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Classification

• What is classification? 

• Issues regarding classification

• Bayesian Classification

• Classification by decision tree induction

• Classification by Neural Networks

• Classification by Support Vector Machines (SVM)

• Instance Based Methods

• Classification accuracy

• Summary
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Classification

• Classification:  
• predicts categorical class labels 

• classifies data (constructs a model) based on the 
training set and the values (class labels) in a 
classifying attribute and uses it in classifying new 
data
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Classification

• Classification:  

• Typical Applications
• credit approval

• target marketing

• medical diagnosis

• treatment effectiveness analysis
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Classification—A Two-Step Process 

• Model construction: 
describing a set of 
predetermined classes
• Each sample is 

assumed to belong to a 
predefined class, as 
determined by the 
class label attribute

• The set of sample used 
for model construction 
is training set

• The model is 
represented as 
classification rules, 
decision trees, or 
mathematical formula
or AI

Training

Data

NAME RANK YEARS TENURED

M ike Assistant Prof 3 no

M ary Assistant Prof 7 yes

B ill P rofessor 2 yes

Jim Associate Prof 7 yes

Dave Assistant Prof 6 no

Anne Associate Prof 3 no

Classification

Algorithms

IF rank = ‘professor’

OR years > 6

THEN tenured = ‘yes’ 

Classifier

(Model)
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Classification—A Two-Step Process 
• Model usage: for classifying 

future or unknown objects
• Estimate accuracy of the 

model
• The known label of test 

sample is compared with 
the classified result from 
the model

• Accuracy rate is the 
percentage of test set 
samples that are correctly 
classified by the model

• Test set is independent of 
training set, otherwise 
over-fitting will occur

• If the accuracy is acceptable, 
use the model to classify data 
tuples whose class labels are 
not known

Classifier

Testing

Data

NAME RANK YEARS TENURED

Tom Assistant P rof 2 no

M erlisa Associate Prof 7 no

G eorge Professor 5 yes

Joseph Assistant P rof 7 yes

Unseen Data

(Jeff, Professor, 4)

Tenured?
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Dataset for computer buyers

age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent

31…40 high yes fair

>40 medium no excellent
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A Decision Tree for “buys_computer”

age?

overcast

student? credit rating?

no yes fairexcellent

<=30 >40

no noyes yes

yes

30..40
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Classification

• What is classification

• Issues regarding classification

• Bayesian Classification

• Classification by decision tree induction

• Classification by Neural Networks

• Classification by Support Vector Machines (SVM)

• Instance Based Methods

• Classification accuracy

• Summary
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Issues (1): Data Preparation

• Data cleaning

• Preprocess data in order to reduce noise 
and handle missing values
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Issues (1): Data Preparation

• Relevance analysis (feature selection)

• Remove the irrelevant or 
redundant attributes
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Issues (1): Data Preparation

• Data transformation

• Generalize and/or normalize data
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Issues (1): Data Preparation

• Data transformation

• Generalize and/or normalize data
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Issues (2): Evaluating Classification Methods

• Predictive accuracy
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Issues (2): Evaluating Classification Methods

• Speed and scalability
• time to construct the model
• time to use the model



Big Data and Data MiningDr. V. E. Levent

Issues (2): Evaluating Classification Methods

• Robustness
• handling noise and missing values
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Issues (2): Evaluating Classification Methods

• Interpretability: 
• understanding and insight provided by the model
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Issues (2): Evaluating Classification Methods

• Goodness of rules
• decision tree size
• compactness of classification rules
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With a lot of data, we can build a histogram. Let us just build one for
“Antenna Length” for now…
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We can leave the 

histograms as they are, 

or we can summarize 

them with two normal 

distributions.
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p(cj | d) = probability of class cj, given that we have observed d

3

Antennae length is 3

• We want to classify an insect we have found. Its antennae are 3 units long. 

How can we classify it?

• We can just ask ourselves, give the distributions of antennae lengths we have

seen, is it more probable that our insect is a Grasshopper or a Katydid.

• There is a formal way to discuss the most probable classification…
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10

2

P(Grasshopper | 3 ) = 10 / (10 + 2) = 0.833

= 0.166P(Katydid | 3 ) = 2 / (10 + 2)

3

Antennae length is 3

p(cj | d) = probability of class cj, given that we have observed d
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9

3

P(Grasshopper | 7 ) = 3 / (3 + 9) = 0.250

= 0.750P(Katydid | 7 ) = 9 / (3 + 9)

7

Antennae length is 7

p(cj | d) = probability of class cj, given that we have observed d

http://buzz.ifas.ufl.edu/254dmj.jpg
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6 6

P(Grasshopper | 5 ) = 6 / (6 + 6) = 0.500

= 0.500P(Katydid | 5 ) = 6 / (6 + 6)

5

Antennae length is 5

p(cj | d) = probability of class cj, given that we have observed d

http://buzz.ifas.ufl.edu/241dmj.jpg
http://buzz.ifas.ufl.edu/241dmj.jpg
http://buzz.ifas.ufl.edu/241dmj.jpg
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Bayes Classifiers

That was a visual intuition for a simple case of the Bayes classifier, also called:

• Idiot Bayes

• Naïve Bayes

• Simple Bayes

Find out the probability of the previously unseen instance belonging to each class, then

simply pick the most probable class.
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Bayes Classifiers

Bayesian classifiers use Bayes theorem, which says

p(cj | d ) = p(d | cj ) p(cj)

p(d)

• p(cj | d) = probability of instance d being in class cj, This is what

we are trying to compute

• p(d | cj) = probability of generating instance d given class cj,

We can imagine that being in class cj, causes you to have feature d with some 

probability

• p(cj) = probability of occurrence of class cj,

This is just how frequent the class cj, is in our database

• p(d) = probability of instance d occurring
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Assume that we have two classes

c1 = male, and c2 = female.

We have a person whose sex we do not 
know, say “drew” or d.

Classifying drew as male or female is 
equivalent to asking is it more probable 
that drew is male or female, I.e which is 
greater p(male | drew) or p(female | drew)

p(male | drew) = p(drew | male ) p(male)

p(drew)

(Note: “Drew

can be a male

or female

name”)

What is the probability of being called

“drew” given that you are a male?
What is the probability 

of being a male?

What is the probability of

being named “drew”?
(actually irrelevant, since it is 

that same for all classes)

Drew Carey

Drew Barrymore
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Name Sex

Drew Male

Claudia Female

Drew Female

Drew Female

Alberto Male

Karin Female

Nina Female

Sergio Male

Is Officer Drew a Male or Female?

Luckily, we have a small 

database with names and

sex.

We can use it to apply

Bayes rule…

Officer Drew

p(cj | d) = p(d | cj ) p(cj)

p(d)
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p(male | drew) = 1/3 * 3/8 = 0.125

3/8 3/8

p(female | drew) = 2/5 * 5/8 = 0.250

3/8 3/8

Officer Drew

p(cj | d) = p(d | cj ) p(cj)

Name Sex

Drew Male

Claudia Female

Drew Female

Drew Female

Alberto Male

Karin Female

Nina Female

Sergio Male

Officer Drew is 

more likely to be 

a Female.

p(d)

p(male | drew) = p(drew | male ) p(male)

p(drew)
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Name Over 170CM Eye Hair length Sex

Drew No Blue Short Male

Claudia Yes Brown Long Female

Drew No Blue Long Female

Drew No Blue Long Female

Alberto Yes Brown Short Male

Karin No Blue Long Female

Nina Yes Brown Short Female

Sergio Yes Blue Long Male

p(cj | d) = p(d | cj ) p(cj)

p(d)

So far we have only considered Bayes 

Classification when we have one

attribute (the “antennae length”, or the “name”).

But we may have many features.

How do we use all the features?
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• To simplify the task, naïve Bayesian classifiers assume 

attributes have independent distributions, and thereby estimate

p(d|cj) = p(d1|cj) * p(d2|cj) * ….* p(dn|cj)

The probability of 

class cj generating 

instance d, equals….

The probability of class cj 

generating the observed 

value for feature 1, 

multiplied by..

The probability of class cj 

generating the observed 

value for feature 2, 

multiplied by..
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• To simplify the task, naïve Bayesian classifiers 

assume attributes have independent distributions, and 

thereby estimate

p(d|cj) = p(d1|cj) * p(d2|cj) * ….* p(dn|cj)

p(officer drew|cj) = p(over_170cm = yes|cj) * p(eye =blue|cj) * ….

Officer Drew 

is blue-eyed, 

over 170cm 

tall, and has 

long hair

p(officer drew| Female) = 2/5 

p(officer drew| Male) = 2/3

* 3/5 * ….

* 2/3 * ….

p(male | drew) = p(drew | male ) p(male)

p(drew)
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p(d1|cj) p(d2|cj) p(dn|cj)

CjThe Naive Bayes classifiers 

is often represented as this

type of graph…

Note the direction of the 

arrows, which state that 

each class causes certain 

features, with a certain 

probability

…
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We can look up all the probabilities 

with a single scan of the database and 

store them in a (small) table…

Sex Over190cm

Male Yes 0.15

No 0.85

Female Yes 0.01

No 0.99

Naïve Bayes is fast and space efficient

…p(d1|cj) p(d2|cj) p(dn|cj)

Sex Long Hair

Male Yes 0.05

No 0.95

Female Yes 0.70

No 0.30

Sex

Male

Female

Cj
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Naïve Bayes is NOT sensitive to irrelevant features...

Suppose we are trying to classify a persons sex based on several features,

including eye color. (Of course, eye color is completely irrelevant to a

persons gender)

p(Jessica |cj) = p(eye = brown|cj) * p( wears_dress = yes|cj) * ….

p(Jessica | Female) = 9,000/10,000 

p(Jessica | Male) = 9,001/10,000

* 9,975/10,000 * ….

* 2/10,000 * ….

Almost the same!
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We can have an arbitrary number of

classes, or feature values

Animal Mass >10kg

Cat Yes 0.15

No 0.85

Dog Yes 0.91

No 0.09

Pig Yes 0.99

No 0.01

Cj

…p(d1|cj) p(d2|cj) p(dn|cj)

Animal

Cat

Dog

Pig

Animal Color

Cat Black 0.33

White 0.23

Brown 0.44

Dog Black 0.97

White 0.03

Brown 0.90

Pig Black 0.04

White 0.01
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The Naïve Bayesian Classifier has a piecewise quadratic decision boundary

Grasshoppers
Katydids

Ants

Adapted from slide by Ricardo Gutierrez-Osuna
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0 100 200 500 600 700300 400

Wing Beat Frequency Hz
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0 100 200 500 600 700300 400

Wing Beat Frequency Hz
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500 700400

Anopheles stephensi: Female

mean =475, Std = 30

600

Aedes aegyptii : Female

mean =567, Std = 43
517

If I see an insect with a wingbeat frequency of 500, what is it?
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400 500 600 700

517

12.2% of the 

area under the 

pink curve

8.02% of the 

area under the 

red curve

What is the error rate?

Can we get more features?

1
𝑃(𝐴𝑛𝑜𝑝ℎ𝑒𝑙𝑒𝑠|𝑤𝑖𝑛𝑔𝑏𝑒𝑎𝑡 = 500) =

√2𝜋 30
𝑒−

(500−475)2

2×302
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0

Midnight
12

Noon
24

Midnight

0 dawn dusk

Aedes aegypti (yellow fever mosquito)

Circadian Features
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Suppose I observe an insect with a wingbeat frequency of 420Hz at 11:00am

What is it?

4
0
0

5
0
0

6
0
0

7
0

0

Midnight
12 24

MidnightNoon
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4
0
0
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0
0

6
0
0

7
0

0

Midnight
12 24

MidnightNoon

(Culex | [420Hz,11:00am]) = (6/ (6 + 6 + 0)) * (2/ (2 + 4 + 3)) = 0.111

(Anopheles | [420Hz,11:00am]) = (6/ (6 + 6 + 0)) * (4/ (2 + 4 + 3)) = 0.222

(Aedes | [420Hz,11:00am]) = (0/ (6 + 6 + 0)) * (3/ (2 + 4 + 3)) = 0.000

Suppose I observe an 
insect with a wingbeat 
frequency of 420 at 
11:00am

What is it?
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• Advantages:

– Fast to train (single scan). Fast to classify

– Not sensitive to irrelevant features

– Handles real and discrete data

– Handles streaming data well

• Disadvantages:

– Assumes independence of features

Advantages/Disadvantages of Naïve Bayes
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Load Iris Dataset and goto Classify Tab

Naïve Bayes
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Select Naive Bayes Classifier

Naïve Bayes
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Cross-Validation

• 10 percent will used for only

validation

Naïve Bayes
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Cross-Validation

• 10 percent will used for only

validation

Naïve Bayes
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Start

Naïve Bayes
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Start

Percentage Split

Naïve Bayes
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Whales

Test subject

Seals

Sharks

K-Nearest Neighbor
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Whales

Test subject

Seals

Sharks

Nearest Neighbor Classifier
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Nearest Neighbor Classification

𝑛=1

𝑁
Given a training dataset 𝒟 = 𝑦 𝑛 , 𝐱 𝑛 , 𝑦 ∈ 1,… ,𝐶 , 𝐱 ∈ ℝ𝑀

and a test input 𝐱𝑡𝑒𝑠𝑡, predict the class label

1) Find the closest point in the training data to 𝐱𝑡𝑒𝑠𝑡
2) Return the class label of that closest point

Need distance function! What should 𝑑(𝐱, 𝒛) be?
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Nearest Neighbor on Fisher Iris Data
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3-Nearest Neighbor (kNN) classifier

SportsWhales

Seals

Sharks
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kNN classifier (k=5)

Test subject

Whales

Seals 

Sharks
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5-Nearest Neighbor (kNN) classifier

SportsWhales

Seals

Sharks
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What is the best k?

How do we choose a learner that is accurate and also generalizes to 
unseen data?

• Larger k→ predicted label is more stable
• Smaller k→ predicted label is more affected by individual training 

points

But how to choose 𝑘?
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k-NN: Details
Inductive Bias:

1. Close points should have similar labels
2. All dimensions are created equally!

Example: two features for k-NN

le
n

g
th

(c
m

)

width (cm)
le

n
g

th
(c

m
)

width (m)

big problem: 
feature scale 

could 
dramatically 

influence 
classification 

results
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KNN Mini Project

Visit to view project specifications

http://levent.tc/files/courses/big_data/mini_projects/knn/proje1_knn.pdf

Prepare a presentation

http://levent.tc/files/courses/big_data/mini_projects/knn/proje1_knn.pdf
http://levent.tc/files/courses/big_data/mini_projects/knn/proje1_knn.pdf
http://levent.tc/files/courses/big_data/mini_projects/knn/proje1_knn.pdf
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KNN on Weka

Select Classifier
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KNN on Weka

Settings
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KNN on Weka

Classification



Big Data and Data MiningDr. V. E. Levent

Decision Tree

Problem Setting

• Set of possible instances X

• Set of possible labels Y

• Unknown target function f : X -> Y

• Set of function hypotheses H = {h | h : X -> Y }

Input: Training examples of unknown target function f
{<xi, y > }

n = {<x1, y1 > , . . . ,<xn, y n > }
i = 1

Output: Best approximates f
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Sample Dataset
• Columns denote features X i
• Rows denote labeled instances xi, y i

• Class label denotes whether a tennis game was played

xi, y i
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Decision Tree
• A possible decision tree for the data:

• Each internal node: test one attributeX i
• Each branch from a node: selects one value for X i
• Each leaf node: predict Y
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Decision Tree
• A possible decision tree for the data:

• What prediction would we make for
<outlook=sunny, temperature=hot, humidity=high, wind=weak> ?
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Decision Tree

• If features are continuous, internal nodes can 
test the value of a feature against a threshold
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Problem Setting:
• Set of possible instances X

– each instance x in X is a feature vector

– e.g., <Humidity=low, Wind=weak, Outlook=rain, Temp=hot>

• Unknown target function f : X→Y

– Y is discrete valued

• Set of function hypotheses H={ h | h : X→Y }

– each hypothesis h is a decision tree

– trees sorts x to leaf, which assigns y

Decision Tree Learning
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Stages of (Batch) Machine Learning
Given: labeled training data X , Y = {hxi, y i i }

n
i = 1

• Assumes each x i ⇠D (X ) with y i = ftarget (xi)

Train the model:

model classifier.train(X, Y )

model

learner

X, Y

x yprediction

Apply the model to new data:

• Given: new unlabeled instance x ⇠D (X )

ypredictionmodel.predict(x)
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Decision Tree Induced Partition

Color

ShapeSize +

Size +

big small

- +

big small

- +

roundsquare

red
green blue
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Decision Tree – Decision Boundary
• Decision trees divide the feature space into axis-

parallel (hyper-)rectangles

• Each rectangular region is labeled with one label

– or a probability distribution over labels

Decision 
boundary
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Expressiveness
• Decision trees can represent any boolean function of 

the input attributes

• In the worst case, the tree will require exponentially 
many nodes

Truth table row→ path to leaf
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Expressiveness
Decision trees have a variable-sized hypothesis space

• As the #nodes (or depth) increases, the hypothesis space
grows
– Depth 1 (“decision stump”): can represent any boolean function of

one feature

– Depth 2: any boolean fn of two features; some involving three
features (e.g., (x1 A x2) V (¬x1 A ¬x 3) )

– etc.

Based on slide by Pedro Domingos
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Another Example: Restaurant Domain
Model a patron’s decision of whether to wait for a table at a restaurant

~7,000 possible cases
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A Decision Tree from Introspection

Is this the best decision tree?
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Decision Tree

• The smallest decision tree that
correctly classifies all of the training
examples is best

• Finding the provably smallest decision
tree is NP-hard

• ...So instead of constructing the absolute
smallest tree consistent with the training
examples, construct one that is pretty
small
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Basic Algorithm for Top-Down Induction of Decision Trees

node = root of decision tree 

Main loop:

1. A the “best” decision attribute for the next node.

2. Assign A as decision attribute for node.

3. For each value of A, create a new descendant of node.

4. Sort training examples to leaf nodes.

5. If training examples are perfectly classified, stop. 
Else, recurse over new leaf nodes.

How do we choose which attribute is best?
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Choosing the Best Attribute

Key problem: choosing which attribute to split a given set of examples

• Some possibilities are:
– Random: Select any attribute at random
– Least-Values: Choose the attribute with the smallest number of possible values
– Most-Values: Choose the attribute with the largest number of possible values
– Max-Gain: Choose the attribute that has the largest expected information gain

• i.e., attribute that results in smallest expected size of subtrees rooted at its children
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Choosing an Attribute
Idea: a good attribute splits the examples into subsets 
that are (ideally) “all positive” or “all negative”

Which split is more informative: Patrons? or Type?
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ID3-induced Decision Tree
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Compare the Two Decision Trees
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Information Gain

Which test is more informative?

Split over whether 
Balance exceeds 50K

Over 50KLess or equal 50K EmployedUnemployed

Split over whether 
applicant is employed
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Impurity/Entropy (informal)

–Measures the level of impurity in a group of examples

Information Gain
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Impurity

Very impure group Less impure
Minimum 
impurity
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Select Decision Tree Based Algorithms
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Select Decision Tree Based Algorithms
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Neural Networks

• Analogy to Biological Systems (Indeed a great example of a good learning system)

• Massive Parallelism allowing for computational efficiency

• The first learning algorithm came in 1959 (Rosenblatt) who suggested that if a 

target output value is provided for a single neuron with fixed inputs, one can 

incrementally change weights to learn to produce these outputs using the 

perceptron learning rule
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Neural NetworkDecision Functions

…

Output

…Input

Hidden Layer
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Inputs

Weights

Output

Independent 

variables

Dependent variable

Prediction

Age 34

Gender 2

Stage 4

.5

.8

.2

.1

.3
.7

.6

.2

WeightsHidden 

Layer

“Probability of 

beingAlive”

0.6





.4

.2


Neural Network Model



Big Data and Data MiningDr. V. E. Levent

Inputs

Weights

Output

Independent 

variables

Dependent 

variable

Prediction

Age 34

Gender 2

Stage 4

.6

.5

.8

.1

.7

WeightsHidden 

Layer

“Probability of 

beingAlive”

0.6



“Combined logistic models”
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Neural Networks

– Example: Neural Network w/1 Hidden Layer

– Example: Neural Network w/2 Hidden Layers

– Example: Feed Forward Neural Network
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Neural Network

23

Decision 
Functions

…

…

Output

Input

Hidden Layer

(E) Output (sigmoid)
y = 1

1+exp(—b)

(D) Output (linear)

b =
Σ

D
j=0 β j z j

(C) Hidden (sigmoid)

jz = 1
1+exp(—a j )

, ∀j

(B) Hidden (linear)

ja =
Σ M

i=0
α j i x i , ∀j

(A) Input
Given x i , ∀i

Neural Network for Classification
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Neural Network Parameters

• Question:

• Suppose you are training a 
one-hidden layer neural 
network with sigmoid 
activations for binary 
classification.

True or False: There is a 
unique set of parameters 
that maximize the 
likelihood of the dataset 
above.
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Neural Network Architectures

Even for a basic Neural Network, there are 
many design decisions to make:

1. # of hidden layers (depth)

2. # of units per hidden layer (width)

3. Type of activation function (nonlinearity)

4. Form of objective function
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Building a Neural Net

…

Output

…Input

Hidden Layer

D = M

Q: How many hidden units, D, should we use?
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Building a Neural Net

…

Output

…Input

Hidden Layer

D = M

Q: How many hidden units, D, should we use?
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Building a Neural Net

…

Output

…Input

Hidden Layer

D < M

What method(s) is 
this setting similar to?

Q: How many hidden units, D, should we use?
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Building a Neural Net

…

…

Output

Input

Hidden Layer

D > M

What method(s) is 
this setting similar to?

Q: How many hidden units, D, should we use?
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Deeper Networks

…

…

Output

Input

Hidden Layer 1

Q: How many layers should we use?
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Deeper Networks

…

…
Input

Hidden Layer 1

…

Output

Hidden Layer 2

Q: How many layers should we use?
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Q: How many layers should we use?

Deeper Networks

…

…
Input

Hidden Layer 1

…
Hidden Layer 2

…

Output

Hidden Layer 3
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Deeper Networks

Output

Hidden Layer 1 …

Input …

Q: How many layers should we use?
• Theoretical answer:

– A neural network with 1 hidden layer is a universal function 
approximator

– Cybenko (1989): For any continuous function g(x), there 
exists a 1-hidden-layer neural net hθ(x)
s.t. | hθ(x) – g(x) | < ϵ for all x, assuming sigmoid activation
functions

• Empirical answer:
– Before 2015 : “Deep networks (e.g. 3 or more hidden layers) 

are too hard to train”
– After 2015: “Deep networks are easier to train than shallow 

networks (e.g. 2 or fewer layers) for many problems”

Big caveat: You need to know and use the right tricks.
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Different Levels of Abstraction

• We don’t know 
the “right” 
levels of 
abstraction

• So let the model 
figure it out!
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Different Levels of Abstraction

Face Recognition:

– Deep Network 
can build up 
increasingly 
higher levels of 
abstraction

– Lines, parts, 
regions
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Different Levels of Abstraction

…

…
Input

Hidden Layer 1

…
Hidden Layer 2

…

Output

Hidden Layer 3
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Activation Functions

…

…

Output

Input

Hidden Layer

Neural Network with sigmoid 
activation functions

(F) Loss

2
J = (y —y )1 * 2

(E) Output (sigmoid)
y = 1

1+exp(—b)

(D) Output (linear)

b =
Σ D

j=0 β j z j

(C) Hidden (sigmoid)

jz = 1
1+exp(—a j )

, ∀j

(B) Hidden (linear)

ja =
Σ M

i=0
α j i x i , ∀j

(A) Input
Given x i , ∀i
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Activation Functions

…

…

Output

Input

Hidden Layer

Neural Network with arbitrary 
nonlinear activation functions

(F) Loss

2
J = (y —y )1 * 2

(E) Output (nonlinear)
y = σ(b)

(D) Output (linear)

b =
Σ

D
j=0 β j z j

(C) Hidden (nonlinear)
z j = σ(a j ), ∀j

(B) Hidden (linear)

ja =
Σ

M
i=0

α j i x i , ∀j

(A) Input
Given x i , ∀i
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Activation Functions

Activation function 
(nonlinearity) is sigmoid 
function…

Sigmoid / Logistic Function

logistic(u) 
1

1+ e−u
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Activation Functions

• A new change: modifying the nonlinearity

– The logistic is not widely used in modern ANNs

Alternate 1: 
tanh

Like logistic function but 
shifted to range [-1, +1]

Slide from William Cohen
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AI Stats 2010

sigmoid 
vs.
tanh

depth 4?
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Decision Functions

…

…

Output

Input

Hidden Layer

(E) Output (sigmoid)
y = 1

1+exp(—b)

(D) Output (linear)

b = Σ
D
j=0 β j z j

(C) Hidden (sigmoid)

jz = 1
1+exp(—a j )

, ∀j

(B) Hidden (linear)

ja = Σ M
i=0

α j i x i , ∀j

Neural Network for Classification

(A) Input
Given x i , ∀i
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Multi-Class Output

…

…

Output

Input

Hidden Layer

…
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NN on Weka
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NN on Weka
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NN on Weka
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SVM – Support Vector Machines

Support Vectors

Small Margin Large Margin
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Support vector machine(SVM).

• Classification is essentially finding the best boundary between classes.

• Support vector machine finds the best boundary points called support vectors and build classifier 
on top of them.

• Linear and Non-linear support vector machine.
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Example of general SVM

 The dots with shadow around 

 them are support vectors. 

 Clearly they are the best data

 points to represent the

 boundary. The curve is the

 separating boundary.
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Optimal Hyper plane, separable case.

• In this case, class 1 and class 2 are separable. 

• The representing points are selected such that the margin between two classes are maximized.

• Crossed points are support vectors. 00 =+ Tx

C

X

X

X

X
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General SVM

This classification problem

clearly do not have a good

optimal linear classifier.

Can we do better? 

A non-linear boundary as 

shown will do fine.
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General SVM Cont.

• The idea is to map the feature space into a much bigger space so that the boundary is linear in 
the new space.

• Generally linear boundaries in the enlarged space achieve better training-class separation, and it 
translates to non-linear boundaries in the original space.
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SVM on Veka
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SVM on Veka
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SVM on Veka
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The Problem of Feature Selection

• Large number of features; sometimes greater than 100.

• The number of combinations can be well over a billion!

• Is there a way to search for an optimal set of features in reasonable time and with 
reasonable computation power?
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Different ways to search for this needle

• Evaluate every possible combination to come up with the best combination – the
brute force method!

• Step-up/step-down methods that add or remove a feature at a time and evaluate 
model performance.

• Use genetic algorithms (GA) for searching this huge solution space.
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Genetic Algorithms (GA)

• This is a high level simulation of a biologically inspired adaptive system – evolution.

• Using a simple set of rules, this system can have emergent behaviour that makes it useful for
various applications.

• GA have been used in applications such as

• predicting the structure of proteins

• training neural networks

• Here, I will talk about the use of GA for searching through the feature space to select an optimal set
of features.
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Terms associated with GA
• Chromosome – a potential solution to the problem. A

common way to represent solutions is using binary numbers.

• Population
generation.

– a set of chromosomes belonging to a
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Terms associated with GA

• Fitness – a metric to evaluate how well a particular solution 
solves the problem.

• Generation – each iteration of the algorithm.

• Selection – a process by which some chromosomes of a 
population are chosen for generating new solutions.
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Terms associated with GA

• Cross-over – is the process of exchange of information between selected
chromosomes.

• Mutation – random changes in chromosomes.
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Schematic of a GA
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Performance
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