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Classification

* |ssues regarding classification

e Bayesian Classification

* Classification by decision tree induction
 Classification by Neural Networks

* Classification by Support Vector Machines (SVM)
* Instance Based Methods

* Classification accuracy

* Summary
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Classification

* predicts categorical class labels
 classifies data (constructs a model) based on the

training set and the values ( )ina
classifying attribute and uses it in classifying new
data
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Classification

* Typical Applications

credit approval

target marketing

medical diagnosis

treatment effectiveness analysis
1}

COVID-19 Radiography Database

.

COVID-19 lung opacity
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Classification—A Two-Step Process

describing a set of | -

predetermined classes Training

* Each sample is Data
assumed to belong to a

predefined class, as
determined by the

for model construction NAME RANK YEARS | TENURED |

is (Model)

* The model is
represented as
classification rules,
decision trees, or

mathematical formula 8 [F rank = ‘pI‘OfCSSOI"
or Al

Classification
Algorithms

OR years > 6
THEN tenured = ‘yes’
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Classification—A Two-Step Process

: for classifying
future or unknown objects

e Estimate accuracy of the
model

* The known label of test
sample is compared with
the classified result from
the model

* Accuracy rate is the
percentage of test set
samples that are correctly
classified by the model

e Test setis independent of
training set, otherwise
over-fitting 'will occur

NAME [RANK _|YEARS TENURED

1 the acourscy s scceptable,

L A e B
George |Professor | 5| yes Tos

— 3

(Jeft, Professor, 4)
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Dataset for computer buyers

| _age | income |student| credit_rating | buys_computer
<=30 |high | no [far | no |
<=30 |high | no lexcellent |  no
31..40 lhigh | no [far |  yes
540 |medum| no lmar |  yes
>40 Jlow | yes |far |  yes

--_
31..40 [low | yes |excellent |  yes
m-_
<=30 |low | yes |far | = yes |
_

excellent
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A Decision Tree for “buys computer”

credit rating?
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Classification

What is classification

Bayesian Classification

Classification by decision tree induction

Classification by Neural Networks

Classification by Support Vector Machines (SVM)

Instance Based Methods

Classification accuracy

Summary
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Issues (1): Data Preparation

e Data cleaning

* Preprocess data in order to reduce noise
and handle missing values

Data Cleaning

Useful Data
Useful Data
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Issues (1): Data Preparation

* Relevance analysis (feature selection)

e Remove the irrelevant or
redundant attributes

(a) All features

(b} Informative features
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Issues (1): Data Preparation

* Data transformation Generalisation Overfitting
* Generalize and/or normalize data
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Issues (1): Data Preparation

e Data transformation
* Generalize and/or normalize data

Original Data Scaled data

Dr. V. E. Levent Big Data and Data Mining



Issues (2): Evaluating Classification Methods

* Predictive accuracy

Predicted
l—‘—\

Spam Not spam

True False
positive negative

Actual v X

False True
positive negative
X v
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Issues (2): Evaluating Classification Methods

e Speed and scalability
* time to construct the model
e time to use the model

Model Execution Time (min) Before v.s. After Optimizations
80

Execution Time (min)

== Before == After

400 600 800

Workload (million rows)
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Issues (2): Evaluating Classification Methods

* Robustness
* handling noise and missing values

Handling Missing Data, Outliers and noisy data

Qutliers —» .
O
QO

O

OO0~ 0
Oo
O
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Issues (2): Evaluating Classification Methods

* |Interpretability:
e understanding and insight provided by the model

Interpretability
Methods
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Issues (2): Evaluating Classification Methods

e Goodness of rules petal widih =0.3
5 ¢ . gini = 0.655

* decision tree size Samples =45
value = g D

e compactness of classification rules i =il Es

petal width < 1.7
gini = 0.482
samples = 32
value = [0, 19, 13]
class = versicolor

gini = 0.0
samples = 13
value =[13, 0, 0]
class = setosa

petal length < 5.05
gini = 0.1
samples = 19
value = [0, 18, 1]
class = versicolor

gini = 0.0 gini = 0.32 gini=0.5
samples = 14 samples =5 samples = 2
value = [0, 14, 0] value = [0, 4, 1] value = [0, 1, 1]
class = versicolor class = versicolor class = versicolor
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http://buzz.ifas.ufl.edu/258dj.jpg
http://buzz.ifas.ufl.edu/091dmj.jpg

With a lot of data, we can build a histogram. Let us just build one for
“Antenna Length” for now...
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We can leave the
histograms as they are,
Or We can summarize
them with two normal
distributions.
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« We want to classify an insect we have found. Its antennae are 3 units long.
How can we classify 1t?

* We can just ask ourselves, give the distributions of antennae lengths we have
seen, 1s it more probable that our insect 1s a Grasshopper or a Katydid.
* There 1s a formal way to discuss the most probable classification...

p(c;| d) = probability of class c;, given that we have observed d

Antennae length 1s 3
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Antennae length 1s 3
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Antennae length 1s 7
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Antennae length 1s 5



http://buzz.ifas.ufl.edu/241dmj.jpg
http://buzz.ifas.ufl.edu/241dmj.jpg
http://buzz.ifas.ufl.edu/241dmj.jpg

Bayes Classifiers

That was a visual intuition for a simple case of the Bayes classifier, also called:
e [diot Bayes
* Naive Bayes

« Simple Bayes

Find out the probability of the previously unseen instance belonging to each class, then
simply pick the most probable class.
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Bayes Classifiers

Bayesian classifiers use Bayes theorem, which says
p(cj| d)=p(d| Cj)P(Cj)
p(d)

p(c;| d) = probability of instance d being in class ¢;, This is what

we are trying to compute

p(d | ¢;) = probability of generating instance d given class Ci
We can imagine that being in class ¢;, causes you to have feature d with some

probability
p(c]) = probability of occurrence of class

C .
J
This is just how frequent the class ¢;, is in our database

p(d) = probability of instance d occurring
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Assume that we have two classes (Note: “Drew

can be a male
or female
name”

c; =male, and ¢, = female.

We have a person whose sex we do not
know, say “drew” or d.

Classifying drew as male or female 1s
equivalent to asking 1s 1t more probable
that drew 1s male or female, I.e which 1s
greater p(male | drew) or p(female | drew)

Drew Carey
What is the probability of being called
(19 b : ‘7
drew” given that you are a male’ i st (e TGy
of being a male?
p(male | drew) = p(drew | male ) p(male) What is the probability of
p(drew) being named “drew”?

(actually irrelevant, since it is
that same for all classes)
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Is Officer Drew a Male or Female?

SCX.

Bayes rule...

Officer Drew

Luckily, we have a small
database with names and

We can use it to apply

P(Cj| d) = p(d | Cj)P(Cj)

p(d)

Dr. V. E. Levent
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Name
Drew
Claudia
Drew
Drew
Alberto
Karin
Nina

Sergio

Sex
Male
Female
Female
Female
Male
Female

Female
Male



Name Sex

Claudia Female
plc; | d)=pld | c;) p(c))
p(d)

p(male | drew) = p(drew | male ) p(male) ~ Alberto Male

Karin Female

p(drew)
Officer Drew Nina Female
p(male| drew)=1/3 * 3/8  =0.125 Sergio  Male
3/8 Officer Drew 1s
more likely to be
p(temale | drew)=2/5* 5/8 =10.250 a Female.

3/8
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So far we have only considered Bayes
Classification when we have one

attribute (the “antennae length”, or the “name”).
But we may have many features.
How do we use all the features?

Name
Drew
Claudia
Drew
Drew
Alberto
Karin
Nina

Sergio

Over 170cm

No
Yes
No
No
Yes
No
Yes
Yes

Dr. V. E. Levent

Eye
Blue
Brown
Blue
Blue
Brown
Blue
Brown
Blue

p(cjl d) =pld | ¢;) plc))

Hair length Sex

Short
Long
Long
Long
Short
Long
Short
Long

Big Data and Data Mining

Male
Female
Female
Female
WEIE
Female

Female
Male

p(d)




« To simplify the task, naive Bayesian classifiers assume
attributes have independent distributions, and thereby estimate

pldic)) = p(di|c)) * p(dylc)) * ....* p(d,|c))

The probability of
class c; generating
Instance d, equals....

The probability of class c;

generating the observed

value for feature 1,

multiplied by..
The probability of class c;
generating the observed
value for feature 2,

multiplied by..
Dr. V. E. Levent Big Data and Data Mining




p(male| drew) = p(drew | male) p(male)
p(drew)

» To simplify the task, naive Bayesian classifiers
assume attributes have independent distributions, and
thereby estimate

p(d|c)) = p(di|c)) * p(dalc)) * ....* p(d,|c))

p(officer drew|c;) = p(over_170,, = yes|c,) * p(eye =blue|c;) * ....

Officer Drew
is blue-eyed, p(officerdrew| Female)= 2/5 * 3/5 * ...
over 170., plofficerdrew| Male) = 2/3 * 2/3 * ...
tall, and has
<N long hair
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The Naive Bayes classifiers
1s often represented as this
type of graph...

Note the direction of the
arrows, which state that
each class causes certain
features, with a certain
probability

Dr. V. E. Levent
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Naive Bayes 1s fast and space efficient

We can look up all the probabilities
with a single scan of the database and
store them in a (small) table...

Sex Over190,,, Sex Long Hair Sex

Male: Yes 0.15 Male: Yes 0.05 Miale:
No 0.85 No 0.95

Female Yes 0.01 Female Yes 0.70 Female
No 0.99 No 0.30
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Naive Bayes is NOT sensitive to irrelevant features...

Suppose we are trying to classify a persons sex based on several features,
including eye color. (Of course, eye color 1s completely 1rrelevant to a

persons gender)

p(Jessica |c;) = p(eye = brown|c;) * p( wears_dress = yes|c;) * ....

p(lessica | Female) = 9,000/10,000 * 9975/10,000 * ...
p(Jessica| Male) = 9,001/10,000 * /10,000 *

Almost the same!
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We can have an arbitrary number of

classes, or feature values

Animal

Cat

Dog;

S

Mass >10,,
Yes
No
\CS
No
\CS
No

Dr. V. E. Levent

0.15
0.85
091
0.09
0.99
0.01

Animal Color

Caty Black
White
Brown

Dog Black
White
Brown

Pig; Black
White

0.33
0.23
0.44
0.97
0.03
0.90
0.04
0.01

Big Data and Data iviining
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The Naive Bayesian Classifier has a piecewise quadratic decision boundary

Big Data and Data’i

E. Levent
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Background noise

Bee begins to cross laser

YD)

interference

X 104
y) 2.5 3 35 4 4.5
Single-Sided Amplitude Spectrum of Y(t)
Harmonics
400 500 600 700 800 900 1000
Frequency (Hz)
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100

100

600 900

Frequency (Hz)
200 300 400 500 600 700 800 900 1000
Frequency (Hz)
200 300 400 500 600 700 800 900 1000
Frequency (Hz)
g .
SET T A ;’a
) 4
- 5 e

il
i gy e
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100 200 300 400 500 600 700
Wing Beat Frequency Hz
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100 200 300 400 500 600 700
Wing Beat Frequency Hz

Dr. V. E. Levent Big Data and Data Mining



00 500 . 600 700
Anopheles stephensi: remale Aedes aegyptii : Female

mean =475, Std = 30 S mean =567, Std =43

If I see an insect with a wingbeat frequency of 500, what is it?
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600 700

400 500
8.02% of the
: 9 12.2% of the
What is the error rate’ AN area under the
pink curve red curve
Can we get more features? | .
1 (z — p)? 1 _ (500—475)?2
Vomo T P\TT 202 P(Anopheles|wingbeat = 500) = — e  2x30°
[
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Circadian Features

Aedes aegypti (yellow fever mosquito)

24

Midnight Noon Midnight
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Suppose | observe an insect with a wingbeat frequency of 420Hz at 11:00am

What 1s 1t?

(=}
~

600

500

400

0

12

Midnight Noon

Dr. V. E. Levent
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Suppose | observe an
insect with a wingbeat

frequency of 420 at

11:00am

What 1s 1t?
(Culex | [420HZz,11:00am]) =(6/(6+6+0)) *(2/(2+4+3)) =0.111
(Anopheles | [420Hz,11:00am]) =(6/(6+6+0)) *(4/(2+4 +3)) =0.222
(Aedes | [420Hz,11:00am]) =(0/(6+6+0)) *(3/(2+4+3)) =0.000
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Advantages/Disadvantages of Naive Bayes

* Advantages:
— Fast to train (single scan). Fast to classify
— Not sensitive to 1rrelevant features
— Handles real and discrete data
— Handles streaming data well
* Disadvantages:

— Assumes independence of features

Dr. V. E. Levent Big Data and Data Mining



Naive Bayes

Load Iris Dataset and goto Classify Tab

& Weka Explorer

Preprocess Classify Cluster  Associate Select attributes  Visualize
Classifier
Choose  |ZeroR
Test options Classifier cutput
Use training set
Supplied test set
Cross-validation Folds | 10
Percentage split

Mare o pti ONS..

(Mom) class

Start

Result list (right-click for options)
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Naive Bayes

Select Naive Bayes Classifier

Dr. V. E. Levent

& Weka Explorer

Preprocess Classify Cluster  Associate
——

Classifier

weka

Aultinocmial Text
VultinomialUpdateable
yesUpdateable

functicns

lazy

meta

misc

rules

trees

Big Data and Data Mining

Select attribu




Naive Bayes

Cro S S -Validation &3 Weka Explorer

Preprocess Classify Cluster  Associate

* 10 percent will used for only Qi

Choose |MaiveBayes
validation Test opions

Use training set

Supplied test set

Cross-validation Folds | 10

Percentage split

Mare options...

(Mom) class

Start

Result list (right-click for options)
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Naive Bayes

Cro S S -Validation &3 Weka Explorer

Preprocess Classify Cluster  Associate

* 10 percent will used for only Qi

Choose |MaiveBayes
validation Test opions

Use training set

Supplied test set

Cross-validation Folds | 10

Percentage split

Mare options...

(Mom) class

Start

Result list (right-click for options)
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3 Weka Explorer

Preprocess Classify Cluster  Associate Select attributes  Visualize

Classifier

Choose |MaiveBayes

o0
N a I Ve B a e S Test options Classifier output
Use training set

Supplied test set Set sepalwidth
mean

std. dev.
Percentage split % | 66 weight sum
precision

Mare options..
ta I | petallength

(Mom) class e

std. dev.
weight sum
Result list (right-click for options) precision

17:24:16 - bayes.MaiveBayes

Cross-validation Folds

Start

petalwidth
mEan
std. dev.
weight sum
precision

Time taken to build model: 0 seconds

Stratified cross-validation =—=
Summary ===

Correctly Classified Instances
Kappa statistic

Mean absolute error

Root mean sguared error
Belative absolute error

Root relative sguared error
Total Number of Instances

=== Detailed Accuracy By Class

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

1,000 0,000 1,000 1,000 1,000 1,000 1,000 1,000 Iris-setosa

0,960 0,040 0,923 0,960 0,941 0,911 0,992 0,983 Iris-versicolor

0,920 0,020 0,958 0,920 0,939 0,910 0,992 0,936 Iris-virginica
Weighted Avg. 0,960 0,020 0,960 0,960 0,960 0,940 0,994 0,989

Confusion Matrix ===

b c© <-- classified as
= Iris-setosa
= Iris-wersicolor
= Iris-virginica
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alve Bayes ._ T —

MaiveBayes

Use training set

Supplied test set

C alidation
ta I | Percentage split

Meore opti

m) class

ercentage Split i

17:25:52 - bayes.NaiveBayes

11

11
0 10
o 1
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K-Nearest Neighbor

Test subject

WHEIES

® Seals

Sharks
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Nearest Neighbor Classifier

Test subject

WHEIES

® Seals

Sharks

Dr. V. E. Levent Big Data and Data Mining



Nearest Neighbor Classification

1) Find the closest point in the training data to X;.;
2) Return the class label of that closest point
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Nearest Neighbor on Fisher Iris Data
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3-Nearest Neighbor (kNN) classifier

Whales

[ X Seals

Sharks
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KNN classifier (k=5)

Test subject

WHEIES

@ Seals

Sharks
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5-Nearest Neighbor (kNN) classifier

Whales

[ X Seals

Sharks
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What is the best k?

How do we choose a learner that is accurate and also generalizes to
unseen data?

* Larger k = predicted label is more stable
* Smaller k = predicted label is more affected by individual training

points

But how to choose k?
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k-NN: Details

Inductive Bias:
1. Close points should have similar labels

2. All dimensions are created equally!

Example: two features for k-NN

big problem:
feature scale
could
dramatically
influence
classification
results

width (cm)
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KNN Mini Project

Visit to view project specifications

Prepare a presentation
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http://levent.tc/files/courses/big_data/mini_projects/knn/proje1_knn.pdf
http://levent.tc/files/courses/big_data/mini_projects/knn/proje1_knn.pdf
http://levent.tc/files/courses/big_data/mini_projects/knn/proje1_knn.pdf

&) Weka Explorer

K N N O n \Ne ka Preprocess  Classify  Cluster  Associate  Select attribu

Classifier

weka

classifiers

bayes

’lr: ;ctl ons
I .
KStar
o o LWL
Select Classifier e
rules

trees
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KNN on Weka

Settings

L] weka.gui.GenericObjectEditor

weka.classifiers.lazy.[Bk

About

K-nearest neighbours ¢

KMM

batchSize

crossValidate

debug

distanceWeighting
doMotCheckCapabilities
mean5quared
nearestMeighboursearchAlgerithm
numDecimalPlaces

window5ize

Dr. V. E. Levent

More

Capabilities

100

False

False

Mo distance weighting
False

False

Choose LinearMMSearch -4 "weka.core.Euclideanl

Cancel

Big Data and Data Mining




KNN on Weka e e s

in

ifier output

ch.Linear]
alidation Folds | 10 1.Linear

Percentage split

More options...

Classification st
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Decision Tree

Problem Setting

* Set of possible instances X

* Set of possible labels Y

* Unknown target function f : X ->Y

* Set of function hypotheses H = {h |h : X ->Y}

Input: Training examples of unknown target function f
{<Xi/ y>}n. 1 = {<X1/ Vis, .. ., < Xp, yn>}
=

Output: Best approximates f
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Sample Dataset

* Columns denote features X;
 Rows denote labeled instances X, y;

* Class label denotes whether a tennis game was played

Outlook Temperature Humidity Wind Class
Sunny Hot High Weak No
Sunny Hot High Strong No
Overcast Hot High Weak Yes
Rain Mild High Weak  Yes
Rain Cool Normal Weak Yes
Xi/ yl Rain Cool Normal Strong No

Overcast Cool Normal Strong Yes
Sunny Mild High Weak No
Sunny Cool Normal Weak Yes

Rain Mild Normal Weak  Yes
Sunny Mild Normal Strong Yes
Overcast Mild High Strong Yes
Overcast Hot Normal Weak Yes
Rain Mild High Strong No

Dr. V. E. Levent Big Data and Data Mining



Decision Tree

* A possible decision tree for the data:

Sunny Overcast Rain

l

Eac
Eac
Eac

Humidity Yes

High Normal Strong Weak

7 N / N

No Yes No

n internal node: test one attribute X
n branch from a node: selects one value for X;

n leaf node: predict Y

Dr. V. E. Levent Big Data and Data Mining




Decision Tree

* A possible decision tree for the data:

Sunny Overcast Rain

l

Humidity Yes

High Normal Strong Weak

/ N / N

No Yes No

 What prediction would we make for

<outlook=sunny, temperature=hot, humidity=high, wind=weak> ?

Dr. V. E. Levent Big Data and Data Mining



Decision Tree

* If features are continuous, internal nodes can
test the value of a feature against a threshold

Sunny Overcast Rain

l

>75% <=75%
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Decision Tree Learning

Problem Setting:
« Set of possible instances X
— each instance x in X is a feature vector
— e.g., <Humidity=low, Wind=weak, Outlook=rain, Temp=hot>
« Unknown target function 1: XY
— Yis discrete valued
« Set of function hypotheses H={ h | h : X2 Y }

— each hypothesis / is a decision tree
— trees sorts x to leaf, which assigns y

Dr. V. E. Levent Big Data and Data Mining



Stages of (Batch) Machine Learning

Given: labeled trainingdata X, Y = {hx; y;i}’_,

® Assumes each X; «-D(X) with y; = fiarget (Xi)

X, Y
Train the model:

model < classifier.train(X, Y ) -

X model yprediction

Apply the model to new data:
* Given: new unlabeled instance X <-D(X)
Yoprediciion < model.predict(x)

Dr. V. E. Levent Big Data and Data Mining



Decision Tree Induced Partition

green red blue
OSized] +
big small square round
- = N e

big small
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Decision Tree — Decision Boundary

* Decision trees divide the feature space into axis-
parallel (hyper-)rectangles

* Each rectangular region is labeled with one label
— or a probability distribution over labels

Decision
boundary
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Expressiveness

e Decision trees can represent any boolean function of
the input attributes

Truth table row = path to leaf

* In the worst case, the tree will require exponentially
many nodes

Dr. V. E. Levent Big Data and Data Mining



Expressiveness

Decision trees have a variable-sized hypothesis space

* Asthe #nodes (or depth) increases, the hypothesis space
grows

— Depth 1 (“decision stump”): can represent any boolean function of
one feature

— Depth 2: any boolean fn of two features; some involving three
features (e.g., (x1 A x2) V (7x1 A 7x3))

— etc.

Dr. V. E. Levent Big Data and Data Mining




Another Example: Restaurant Domain

Model a patron’s decision of whether to wait for a table at a restaurant

E-:{ample Attributes

Burger
Thai
French
ltalian
Burger
Thai
Burger
Italian
Thai
Burger

—I-n-n-n—l'n—l'n—l—l'n—l-_'_':'."

o B B B B e B B B B B B
mTTmTm 444 4T T mTnE

T
F
T
T
F
F
F
F
T
F
T

o B B B B e B B B B B B
o B B B B M B M B B R B B
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A Decision Tree from Introspection

Hn:-

— -
Hn:-

Y
I"h.l"'-. I"h.i"h

w4 -m

MNo ,.-""f , No /"

Iy h"'-..h rd ﬁ""-.
Is this the best decision tree?
Dr. V. E. Levent Big Data and Data Mining




Decision Tree

* The smallest decision tree that
correctly classifies all of the training
examples is best

* Finding the provably smallest decision
tree is NP-hard

» ...Soinstead of constructing the absolute
smallest tree consistent with the training
examples, construct one that is pretty
small
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Basic Algorithm for Top-Down Induction of Decision Trees

node = root of decision tree

Main loop:

1. A < the “best” decision attribute for the next node.
Assign A as decision attribute for node.
For each value of A, create a new descendant of node.
Sort training examples to leaf nodes.

If training examples are perfectly classified, stop.
Else, recurse over new leaf nodes.

How do we choose which attribute is best?
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Choosing the Best Attribute

Key problem: choosing which attribute to split a given set of examples

* Some possibilities are:
— Random: Select any attribute at random
— Least-Values: Choose the attribute with the smallest number of possible values
— Most-Values: Choose the attribute with the largest number of possible values

— Max-Gain: Choose the attribute that has the largest expected information gain
* j.e., attribute that results in smallest expected size of subtrees rooted at its children
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Choosing an Attribute

Idea: a good attribute splits the examples into subsets
that are (ideally) “all positive” or “all negative”

..--"""-r'-.-"-'-.lIlIl "'\

e Y ! .
French o Italﬂn;f ".,‘Thﬂl

(- @ oo

Which split is more informative: Patrons? or Type?
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ID3-induced Decision Tree
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e
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Compare the Two Decision Trees
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Information Gain

Which test is more informative?

Split over whether
Balance exceeds 50K

Less or equal 50K

_’_
+ + T

+  +
+ T,

o+ 4
* +
Over 50K
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Split over whether
applicant is employed
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Information Gain

Impurity/Entropy (informal)

— Measures the level of impurity in a group of examples

ot

o
® 1 o‘..

+
®
o
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Impurity

Very impure group
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O
®
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Neural Networks

* Analogy to Biological Systems (Indeed a great example of a good learning system)
e Massive Parallelism allowing for computational efficiency

* The first learning algorithm came in 1959 (Rosenblatt) who suggested that if a
target output value is provided for a single neuron with fixed inputs, one can

incrementally change weights to learn to produce these outputs using the
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Decision Functions Neural Network

Output 0
Hidden Layer a Q
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Neural Network Model

34 P
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Hidden ependent variable
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“Combined logistic models”
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\J

D
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Layer
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Hidden Dependent variable

Layer Prediction
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Neural Networks

— Example: Neural Network w/1 Hidden Layer
— Example: Neural Network w/2 Hidden Layers

— Example: Feed Forward Neural Network
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Neural Network for Classification

Output Q
(D) Outpu&(linear)

—_— D . .
Hidden Layer e e 6 b= j=0 6121
(C) Hidden (sigmoid)
1
~ @ @ @ - O

(E) Output (sigmoid)
— 1
y = 1+exp(—b)

Zj = 1+exp(—a; )’ Vj

(B) Hidden (£near)

i .
a = Lo @jiXi, Vj

(A) Input
Given x;, Vi 23

Dr. V. E. Levent Big Data and Data Mining



Neural Network Parameters

True or False: There is a
unique set of parameters
that maximize the
likelihood of the dataset
above.
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Neural Network Architectures

Even for a basic Neural Network, there are
many design decisions to make:

1. # of hidden layers (depth)
# of units per hidden layer (width)
Type of activation function (nonlinearity)

B oW

Form of objective function
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Building a Neural Net

Q: How many hidden units, D, should we use?

Output ’
Hidden Layer e Q oo e
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Building a Neural Net

Q: How many hidden units, D, should we use?

Output ’
Hidden Layer e Q oo e

Input ° ° coo °
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Building a Neural Net

Q: How many hidden units, D, should we use?
What method(s) is

Output ’
this setting similar to?
Hidden Layer e Q Doo e
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Building a Neural Net

Q: How many hidden units, D, should we use?

Output ’

DY

Hidden Layer Q Q oo e

What method(s) is
this setting similar to?

Input o
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Deeper Networks

Q: How many layers should we use?

Output °
Hidden Layer 1 o e °

lnPUt ° ° ° - °
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Deeper Networks

Q: How many layers should we use?

Output 0
Hidden Layer 2 a ° °

Hidden Layer 1 a ° Q
lanIt ° ° ° - °
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Deeper Networks

Q: How many layers should we use?

Output a
Hidden Layer 3 ° e G

Hidden Layer 2 a ° °
Hidden Layer 1 a ° Q
InPUt Q ° ° - °
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Deeper Networks

* Theoretical answer:

— A neural network with 1 hidden layer is a universal function
approximator

— Cybenko (1989): For any continuous function g(x), there
exists a 1-hidden-layer neural net hg(x)
s.t. | hg(x) — g(x) | < € for all x, assuming sigmoid activation
functions

* Empirical answer:

— Before 2015 : “Deep networks (e.g. 3 or more hidden layers)
are too hard to train”

— After 2015: “Deep networks are easier to train than shallow
networks (e.g. 2 or fewer layers) for many problems”

Big caveat: You need to know and use the right tricks.
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Different Levels of Abstraction

Feature representation
* We don’t know |

: ] . H & 3rd layer
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Different Levels of Abstraction

oy o Feature representation
Face Recoghnition: : ?

— Deep Network im0 . 3rd layer
can build up Bt "Objects”
increasingly 2
higher levels of | : -
abstraction ST “Object parts”

— Lines, parts,
regions

1st layer
“"Edges”

Pixels

Dr. V. E. Levent Big Data and Data Mining




Different Levels of Abstraction

Feature representation
Output ° .
3rd layer
Hidden Layer 3 C; Cr e . = I.IIDbjEEtSH
Hidden Layer 2 D, Do be ; - Eﬁd |-Ei'!||I'EI‘
' “Object parts”
Hidden Layer1 (KD = 1st layer

“"Edges”
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Activation Functions

Neural Network with sigmoid
activation functions

Output 0
Hidden Layer ° e

InPUt o ° ° - o

(F) Loss
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_ 1
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(A) Input
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Activation Functions

Neural Network with arbitrary
nonlinear activation functions

Output 0
Hidden Layer ° e

InPUt o e ° - o

(F) Loss
J =3y —y")?

(E) Output (nonlinear)
y = o(b)
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j=0 1<)

(C) Hidden (nonlinear)
zj = o(a;), Vj

(B) Hidden (iinear)
_ "M ;

(A) Input
Givenx;, Vi
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Activation Functions

Activation function
(nonlinearity) is sigmoid
function...
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Activation Functions

* A new change: modifying the nonlinearity
— The logistic is not widely used in modern ANNs

Alternate 1:
tanh

Like logistic function but
shifted to range [-1, +1]
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Understanding the difficulty of training deep feedforward neural networks

Al Stats 2010
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Tanh depth4?
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Tanh N
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=

X 1.5
# exemples seen
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Decision Functions

Neural Network for Classification

Output 0
Hidden Layer ° e

InPUt o ° ° - o

(E) Output (sigmoid)
1
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(D) Output (linear)

o
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1
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(B) Hidden (linear)
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(A) Input
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Multi-Class Output

Output

Hidden Layer
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NN on Weka
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NN on Weka
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SVM — Support Vector Machines
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Support vector machine(SVM).

» Classification is essentially finding the best boundary between classes.

* Support vector machine finds the best boundary points called support vectors and build classifier
on top of them.

* Linear and Non-linear support vector machine.
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Example of general SVM

The dots with shadow around
them are support vectors.
Clearly they are the best data
points to represent the
boundary. The curve is the

separating boundary.
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Optimal Hyper plane, separable case.

* |In this case, class 1 and class 2 are separable.

* The representing points are selected such that the margin between two classes are maximized.

* Crossed points are support vectors.
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General SVM

This classification problem
clearly do not have a good

optimal linear classifier.

Can we do better?
A non-linear boundary as

shown will do fine.
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General SVM Cont.

* The idea is to map the feature space into a much bigger space so that the boundary is linear in
the new space.

* Generally linear boundaries in the enlarged space achieve better training-class separation, and it
translates to non-linear boundaries in the original space.
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The Problem of Feature Selection

* Large number of features; sometimes greater than 100.

* The number of combinations can be well over a billion!

\." -— -
Tl <<

* |sthere a way to search for an optimal set of features in reasonable time and with
reasonable computation power?
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Different ways to search for this needle

Evaluate every possible combination to come up with the best combination —the
brute force method!

Step-up/step-down methods that add or remove a feature at a time and evaluate
model performance.

Use genetic algorithms (GA) for searching this huge solution space.
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Genetic Algorithms (GA)

This is a high level simulation of a biologically inspired adaptive system — evolution.

Using a simple set of rules, this system can have emergent behaviour that makes it useful for
various applications.

GA have been used in applications such as
* predicting the structure of proteins
e training neural networks

Here, | will talk about the use of GA for searching through the feature space to select an optimal set
of features.
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Terms associated with GA

e Chromosome - a potential solution to the problem. A
common way to represent solutions is using binary numbers.

* Population — a set of chromosomes belonging to a
generation.
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Terms associated with GA

* Fitness —a metric to evaluate how well a particular solution
solves the problem.

e Generation — each iteration of the algorithm.

» Selection — a process by which some chromosomes of a
population are chosen for generating new solutions.

c i B
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Terms associated with GA

* Cross-over —is the process of exchange of information between selected
chromosomes.

e Mutation — random changes in chromosomes.
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Schematic of a GA

Population GA Operators
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