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Programs 101
RISC-V Assembly

Load/Store Architectures: , ,
main: addi sp,sp, -48

e Read data from memory (put in registers)
 Manipulate it fp,sp

e Store it back to memory x15,n
C Code

int main (int argc, char* argv[ ]) {
int i;
int m n;

int sum 0;

for (i =
sum += 1i;

}

printf (“...”, n, sum);

x15,x14,L3

H Instructions that read from

or write to memory...
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What’s the problem?

+ big
— slow
— far away
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The Need for Speed

Instruction speeds:
 add, sub,shift: 1 cycle
* mult: 3 cycles

 load/store: 100 cycles
(2 GHz processor = 0.5 ns clock, off-chip 50 ns)
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What’s the solution?

el

o TYAN 5550
{oEs10MED TN USA o
L |coreo ro cowr

Dr. V. E. Levent Computer Architecture



Locality Locality Locality

* the same thing again soon

. H
- Temporal Locality
* something near that thing, soon
—> Spatial Locality H | N

total = 0;
for (1 = 0; i < n; i++)

total += ;
return total;
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The Memory Hierarchy
Small, Fast

12 cycles,
256 KB

36 cycles,
2-20 MB

512 MB-4GB

5-20 ms
16GB - 4 TB,
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Some Terminology

Cache hit

data is in the Cache
t,.. : time it takes to access the cache

Hit rate (%hit): # cache hits / # cache accesses

Cache miss

data is not in the Cache

t_...: time it takes to get the data from below the $

miss *

Miss rate (%miss): # cache misses / # cache accesses

Cacheline or cacheblock or simply line or block

Minimum unit of info that is present/or not in the cache
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Single Core Memory Hierarchy
ON CHIP

Processor
Registers Regs

L1 Caches

L2 Cache

L3 Cache

Main Memory

Disk
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Multi-Core Memory Hierarchy

ON CHIP

Processor Processor Processor Processor
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Memory Hierarchy by the Numbers
CPU clock rates ~0.33ns — 2ns (3GHz-500MHz)

Memory Transistor count  Access time Access time in $perGB  Capacity
technology cycles in 2021

SRAM

6-8 transistors 0.5-2.5ns 1-3 cycles S4k 256 KB
(on chip)
SRAM 1.5-30 ns 5-15 cycles S4k 32 MB
(off chip)
DRAM 1 transistor 50-70 ns 150-200 cycles $10-S20 8 GB
(needs refresh)
SSD (Flash) 5k-50k ns Tens of $0.75-$1 512 GB
thousands
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Basic Cache Design

Direct Mapped Caches
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16 Byte Memory MEMORY

addr
0000
0oLl B
load 1100 2 rl 0010
ool b
0100
0101
0110
0111
* Byte-addressable memory 1000
e 4 address bits = 16 bytes total 1001
1010
b addr bits = 2P bytes in memory lo11

=

1111
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4-Byte, Direct Mapped Cache i

CACHE
index data
XXXX
< Cache entry
= row
= (cache) line
= (cache) block

Block Size: 1 byte

Direct mapped:
* Each address maps to 1 cache block
* 4 entries 2 2 index bits (2" = n bits)
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4-Byte, Direct Mapped Cache MEMORY

tag|index
XXXX

CACHE

tag data

Tag: minimalist label/address

address = tag + index
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4-Byte, Direct Mapped Cache

MEMORY

CACHE

V tag data

el X
e x

T
e %

One last tweak: valid bit

B
IR
e ]
L7
g
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Simulation #1 of a 4-byte, DM Cache

MEMORY

B
IR
M

tag
I 0

1111
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Simulation #1 of a 4-byte, DM Cache MEMORY

B
IR
e ]
L7
g
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Block Diagram 4-entry, direct mapped Cache

CACHE

V tag data

00| itiooo

o ol Totonow | Great!
5 oooooooo | Are we done?
8

6 1010 0101

data

Hit!
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MEMORY

Simulation #2: 4-byte, DM Cache

B
D
0
P
Q.
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Simulation #2: 4-byte, DM Cache
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MEMORY

Simulation #2: 4-byte, DM Cache

V tag data

B

o5

B
D
N

— = |ndex
N tag
- o[ o

lllO

llll
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MEMORY

Simulation #2: 4-byte, DM Cache
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MEMORY

data

Simulation #2: 4-byte, DM Cache
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Simulation #2: 4-byte, DM Cache
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MEMORY

Simulation #2: 4-byte, DM Cache

B
D
0
P
Q0
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Simulation #2: 4-byte, DM Cache

load
load
load
load

1100
1101
0100
1100

CACHE

V tag data
ul o

opml ot
s x

Miss

Disappointed!

Miss

Miss @
Miss
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Reducing Misses
by Increasing Block Size

* Leveraging Spatial Locality
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MEMORY

Increasing Block Size

D
0
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Simulation #3: 8-byte, DM Cache

V tag data

B
D
M

111

Dr. V. E. Levent Computer Architecture



Simulation #3: 8-byte, DM Cache

B
D
M

=
-
-
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Simulation #3: 8-byte, DM Cache

=
-
-
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Simulation #3: 8-byte, DM Cache

=
-
-
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Simulation #3: 8-byte, DM Cache

=
-
-
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Simulation #3: 8-byte, DM Cache

=
-
-
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Simulation #3: 8-byte, DM Cache

B
D
0
P
0
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Removing Conflict Misses
with Fully-Associative Caches
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MEMORY

data

8 byte, fully-associative Cache

CACHE

V tag data V tag data V tag data V tag data

What should the offset be?

=

nat should the index be?

What should the tag be?
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Simulation #4: 8-byte, FA Cache

V tag data V tag data

[0Jooo] x| x O
t*

XXX

CACHE

x| x J0

V tag data V tag data

XXX

-
-
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Simulation #4: 8-byte, FA Cache

V tag data V tag data

0]

XXX

*

CACHE

x| x J0

XXX

=)
N

V tag data V tag data

[0l X | X
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Simulation #4: 8-byte, FA Cache

V tag data V tag data

0]

XXX

*

CACHE

x| x J0

XXX

-
-

V tag data V tag data

[0l X | X
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Simulation #4: 8-byte, FA Cache

V tag data V tag data

a

010

CACHE

HiE O

XXX

*

-
-

V tag data V tag data

[0l X | X
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Pros and Cons of Full Associativity

+ No more conflicts!
+ Excellent utilization!

But either:
Parallel Reads

— lots of reading!
Serial Reads

— lots of waiting

Dr. V. E. Levent
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Pros & Cons

Direct Mapped Fully Associative

SRAM Overhead Less More

Speed Faster Slower

Scalability Very Not Very

Hit Rate High
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Reducing Conflict Misses
with Set-Associative Caches

Not too conflict. Not too slow.
... Just Right!
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8 byte, 2-way set associative Cache

CACHE

V tag data V tag data

O OE
o[l c i o ool Pla

What should the offset be?

nat should the index be?

=

What should the tag be?
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MEMORY

8 byte, 2-way set associative Cache

CACHE

V tag data ' V‘ tag data
[of0d] x| x BHol(xd X | X
0] 0| x| X Ralolm| X | X

111

Dr. V. E. Levent Computer Architecture



MEMORY

8 byte, 2-way set associative Cache

CACHE

V tag data V tag data
» 0NN
0] o | x| X R0l X | X

111

B
D
0
P
_Q
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MEMORY
data

8 byte, 2-way set associative Cache

CACHE

0100
V tag data V tag data 0101

L0 v 1o BYofw] x| x
0o x| xR0l X 1 x

Miss
Hit!

Miss

111

Dr. V. E. Levent Computer Architecture



MEMORY

8 byte, 2-way set associative Cache

CACHE

V tag data V tag data

L0 v o RN e f o
CEI S « O

Miss
Hit!
Miss
Hit!

111

B
D
0
P
_Q
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24 byte, 3-way set associative Cache

5 bit address
2 byte block size
24 byte, 3-Way Set Associative CACHE

tag data

/4

X
X
X
X

Y
? Y
? Y
? / Y’

C
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24 byte, 3-way set associative Cache

5 bit address
2 byte block size
24 byte, 3-Way Set Associative CACHE

V tag data V tag data V tag data

0] 2] X" | ¥
? 77 |
|

pad

| x v o[ w1y
[ x v o[ [ x iy
| X v

pad

0] 2] X* | ¥

0
0
0
0 0L 2l X" | ¥

|
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Eviction Policies

Which cache line should be evicted from the cache to make room for a
new line?

* Direct-mapped: no choice, must evict line selected by index

* Associative caches
 Random: select one of the lines at random
* Round-Robin: similar to random
* FIFO: replace oldest line
* LRU: replace line that has not been used in the longest time
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Misses: the Three C’s

* Cold (compulsory) Miss:

never seen this address before
e Conflict Miss:
cache associativity is too low

* Capacity Miss:
cache is too small
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Miss Rate vs. Block Size

Block size
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Block Size Tradeoffs

 For a given total cache size,

Larger block sizes mean....
» fewer lines
* so fewer tags, less overhead
 and fewer cold misses (within-block “prefetching”)
* But also...
» fewer blocks available (for scattered accesses!)
* so more conflicts
 can decrease performance if working set can’t fitin S
 and larger miss penalty (time to fetch block)
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Miss Rate vs. Associativity

Miss rate

8 KiB R

32 KiB TTeAKEB

128 KiB

One-way Two-way Four-way Eight-way
Associativity
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Which caches get what properties?

— 0 *
tavg - thit + % Omiss tmiss

Design with

Fast ) ]
speed in mind
L1 Caches
|2 Cache More Associatiye
Bigger Block Sizes
L3 Cache Larger Capacity
Design with miss
Big rate in mind
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2-Way Set Associative Cache (Reading)

Tag Index Offset

line select
64bytes
' word select
hit? data 320t
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3-Way Set Associative Cache (Reading)

Tag Index Offset

line select

64bytes

' word select
hit? data 320
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Performance Calculation with S Hierarchy

— 0 *
 Parameters tavg B thit + /Omiss tmiss

* Reference stream: all loads
* DS: t,. = 1ns, %,.... = 5%
* L2:t,, = 10ns, %, = 20% (local miss rate)
* Main memory: t,.. = 50ns
* Whatis t, ¢ without an L2?
y tmissDS =
y tang$=
* Whatist,,
* tmissD$ =
* Lgn=
* tangS=

$ with an L2?
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Performance Calculation with S Hierarchy

=t.. % . *t .

* Parameters tavg thlt + /Omlss tmlss

e Reference stream: all loads

* DS: t,. = 1ns, %,.... = 5%

* L2:t,, = 10ns, %, = 20% (local miss rate)

* Main memory: t,, = 50ns
* Whatis t, ¢ without an L2?

* tmlssDS thitM

* Tavgps = thitns T Pomissps thin = 1NS+(0.05*50ns) = 3.5ns
* Whatis t, ¢ with an L2?

: :missD,'i_= tangZ

¢ t:i: = thitL2+O/ missLZ*thitM - lOI’lS"‘(O 2*50ns) =20ns

thitps + YPomissps Lavgro = 1NS+(0.05*20ns) = 2ns
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Performance Summary

Average memory access time (AMAT) depends on:
* cache architecture and size
e Hit and miss rates

* Access times and miss penalty

Cache design a very complex problem:
Cache size, block size (aka line size)
Number of ways of set-associativity (1, N, o)
Eviction policy
Number of levels of caching, parameters for each
Separate |-cache from D-cache, or Unified cache
Prefetching policies / instructions

Write policy
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IELGENEY,

Direct Mapped -2 fast, but low hit rate
Fully Associative = higher hit cost, higher hit rate
Set Associative 2 middleground

Cache performance is measured by the average memory access time
(AMAT), which depends cache architecture and size, but also the access
time for hit, miss penalty, hit rate.
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What about Stores?

We want to write to the cache.

If the data is not in the cache?
Bring it in. (Write allocate policy)

Should we also update memory?
* Yes: write-through policy
* No: write-back policy
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Write-Through Cache

120 |
lruV tag data _
B 150 |

173 |

33 |

28 |

225 |
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Write-Through (REF 1)

IruV tag data

110

210
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Write-Through (REF 1)

IruV tag data

71
01 78
29 162
33 |
X0 28 |
x1 “
X2
X3
225 |
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Write-Through (REF 2)

IruV tag data

71
01 78
29 162
33 |
X0 28 |
x1 “
X2
X3
225 |
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Write-Through (REF 2)

IruV tag data

T

1 78
29 e
B
s
s

Dr. V. E. Levent Computer Architecture



Write-Through (REF 3)

IruV tag data

01
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Write-Through (REF 3)

IruV tag data
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Write-Through (REF 4)

IruV tag data
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w
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Write-Through (REF 4)

IruV tag data
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Write-Through (REF 4)

IruV tag data

11 173
29

29
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Write-Through (REF 5)

IruV tag data

11
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Write-Through (REF 6)

IruV tag data

01
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Write-Through (REF 6)

IruV tag data
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Write-Through (REF 7)

IruV tag data

11
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Write-Through (REF 7)

IruV tag data

01 /101

Dr. V. E. Levent
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Summary: Write Through

Write-through policy with write allocate

. Cache miss: read entire block from memory
. Write: write only updated item to memory
. Eviction: no need to write to memory
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Next Goal: Write-Through vs. Write-Back

What if we DON’T to write stores immediately to memory?

Keep the current copy in cache, and update memory when data is evicted
(write-back policy)
Write-back all evicted lines?

No, only written-to blocks
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Write-Back Meta-Data (Valid, Dirty Bits)

V =1 means the line has valid data

D = 1 means the bytes are newer than main memory
When allocating line:

« SetV=1,D=0,fillin Tag and Data

When writing line:

e SetD=1

* When evicting line:

e IfD=0:justsetV=0

 IfD=1:write-back Data, thensetD=0,V=0
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Write-back Example

* Example: How does a write-back cache work?
* Assume write-allocate
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Handling Stores (Write-Back)

16 byte, byte-addressed memory
4 btye, fully-associative cache:
2-byte blocks, write-allocate
4 bit addresses:
3 bit tag, 1 bit offset
123
Iru V d tag data
;
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Write-Back (REF 1)

Iru V d tag data

1
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Write-Back (REF 1)

Iru V d tag data

0
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Write-Back (REF 2)

Iru V d tag data

0
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Write-Back (REF 2)

Iru V d tag data

1
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Write-Back (REF 3)

Iru V d tag data

1
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Write-Back (REF 3)

Hit

Iru V d tag data
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Write-Back (REF 4)

Hit

Iru V d tag data
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Write-Back (REF 4)

Hit

Iru V d tag data

0 1
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Write-Back (REF 4)

Hit

120
123

lru V d tag data

~
(IR

150
162
173

210
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Write-Back (REF 5)
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Write-Back (REF 5)
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Write-Back (REF 5)

Hit

<<

Iru V d tag data

0 0
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Write-Back (REF 6)

Hit

<<

Iru V d tag data

0 0

101

1 010

Dr. V. E. Levent

~
(IR

150
162
173

210

Computer Architecture




Write-Back (REF 6)

Iru V d tag data

0 0

101

1 010
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Write-Back (REF 7)

g
M Iru V d tag data
e o [F101 6
1 010

33

2w

T
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Write-Back (REF 7)

Iru V d tag data

0
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Write-Back (REF 8,9)

Cheap subsequent
updates!

Iru V d tag data

0 1 101 29

1 010

150

210
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Write-Back (REF 8,9)

Hit
M
M
Hit
::: lru V d tag data
Hit o il [102) 29
1 010
33
28
225
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How Many Memory References?

Write-back performance

 How many reads?
 Each miss (read or write) reads a block from mem
* 4 misses 2 8 mem reads
* How many writes?
 Some evictions write a block to mem
* 1dirty eviction = 2 mem writes
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Write-back vs. Write-through Example

Assume: large associative cache, 16-byte lines

N 4-byte words

for (i=1; i<n; i++)
A[o] += A[1i];

for (i=0; i<n; i++)
B[i] = A[i]

Write-thru: n reads (n/4 cache lines)
n writes

Write-back: n reads (n/4 cache lines)

4 writes (one cache line)

Write-thru: nreads (n/4 cache lines)
n writes

Write-back: n reads (n/4 cache lines)

n writes (n/4 cache lines)

Dr. V. E. Levent Computer Architecture




So is write back just better?

Short Answer: Yes (fewer writes is a good thing)
Long Answer: It's complicated.

* Evictions require entire line be written back to memory (vs. just the
data that was written)

* Write-back can lead to incoherent caches on multi-core processors

Dr. V. E. Levent Computer Architecture



Optimization: Write Buffering

* Q: Writes to main memory are slow!

* A: Use a write-back buffer
* A small queue holding dirty lines
e Add to end upon eviction
 Remove from front upon completion

* Q: When does it help?
* A: short bursts of writes (but not sustained writes)
 A: fast eviction reduces miss penalty
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Write-through vs. Write-back

* Write-through is slower
* Butsimpler (memory always consistent)

* Write-back is almost always faster
 write-back buffer hides large eviction cost
* But what about multiple cores with separate caches
but sharing memory?
* Write-back requires a cache coherency

protocol

* Inconsistent views of memory

* Need to “snoop” in each other’s caches

* Extremely complex protocols, very hard to get right
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Cache-coherency
Q: Multiple readers and writers?

A: Potentially inconsistent views of memory
A’ CPU CPU CPU CPU

ALl L1 ALl L1 1 L1 1 L1

JA L2 L2

net A Mem disk

Cache coherency protocol

May need to snoop on other CPU’s cache activity
Invalidate cache line when other CPU writes

Flush write-back caches before other CPU reads

Or the reverse: Before writing/reading...

Extremely complex protocols, very hard to get right
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IELGENEY,

* Write-through policy with write allocate
e Cache miss: read entire block from memory
 Write: write only updated item to memory
* Eviction: no need to write to memory
 Slower, but cleaner

* Write-back policy with write allocate

 Cache miss: read entire block from memory
e **But may need to write dirty cacheline first**
 Write: nothing to memory

Eviction: have to write to memory entire cacheline because don’t know what is
dirty (only 1 dirty bit)

e Faster, but more complicated, especially with multicore
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Cache Conscious Programming

// H=6, W= 10
int A[H][W];
for(x=0; x < W; Xx++)
for(y=0; y < H; y++)
sum += A[y][x];

YOUR
MIND

MEMORY
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Cache Conscious Programming

// H=6, W= 10
int A[H][W];
for(x=0; x < W; X++)
for(y=0; y < H; y++)
sum += A[y][x];

EEEEEEEEE
DEEEEEREEN
OREE YOUF

Every access a cache miss! (unless MEMORY
entire matrix fits in cache)
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Cache Conscious Programming
// H=6, W= 10
int A[H][W];
for(x=0; x < H; x++)
for(y=0; y < W; y++)
sum += A[x][y];

1]2f3]4als|6]7)8] |
EEEEEENERE
HEEN

YOUR
MIND

 Blocksize=4 - 75% hit rate
* Blocksize=8 - 87.5% hit rate MEMORY
 Blocksize=16 = 93.75% hit rate

* And you can easily prefetch to warm the cache
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A Real Example

e Dual 32K L1 Instruction caches
* 8-way set associative
* 64 sets
* 64 byte line size

e Dual 32K L1 Data caches

e Same as above

* Single 6M L2 Unified cache
e 24-way set associative (!!!)
* 4096 sets
* 64 byte line size

* 4GB Main memory
e 1TB Disk
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