Computer Architecture

Week 12: Cache

Fenerbahce Universitesi

Professor & TAs

Prof: Dr. Vecdi Emre Levent
Office: 311
Email: emre.levent@fbu.edu.tr

TA: Ars. Gor. Ugur Ozbalkan
Office: 311

Email: ugur.ozbalkan@fbu.edu.tr

Dr. V. E. Levent Computer Architecture

Course Plan

 Cache

Dr. V. E. Levent Computer Architecture

Programs 101
RISC-V Assembly

Load/Store Architectures: , ,
main: addi sp,sp, -48

e Read data from memory (put in registers)
 Manipulate it fp,sp

e Store it back to memory x15,n
C Code

int main (int argc, char* argv[]) {
int i;
int m n;

int sum 0;

for (i =
sum += 1i;

}

printf (“...”, n, sum);

x15,x14,L3

H Instructions that read from

or write to memory...
Dr. V. E. Levent Computer Architecture

What’s the problem?

+ big
— slow
— far away

3|

AN 55502 i T
[oestoues 1w ush <oy | © & ’-'.‘"ﬂ‘ ‘..
resres o comwr 5 W ;. ;{1 blod e .:;_\\!J —

Dr. V. E. Levent Computer Architecture

CPU

The Need for Speed

Instruction speeds:
 add, sub,shift: 1 cycle
* mult: 3 cycles

 load/store: 100 cycles
(2 GHz processor = 0.5 ns clock, off-chip 50 ns)

Dr. V. E. Levent Computer Architecture

What’s the solution?

el

o TYAN 5550
{oEs10MED TN USA o
L |coreo ro cowr

Dr. V. E. Levent Computer Architecture

Locality Locality Locality

* the same thing again soon

. H
- Temporal Locality
* something near that thing, soon
—> Spatial Locality H | N

total = 0;
for (1 = 0; i < n; i++)

total += ;
return total;

Dr. V. E. Levent Computer Architecture

The Memory Hierarchy
Small, Fast

12 cycles,
256 KB

36 cycles,
2-20 MB

512 MB-4GB

5-20 ms
16GB - 4 TB,

Dr. V. E. Levent Computer Architecture

Some Terminology

Cache hit

data is in the Cache
t,.. : time it takes to access the cache

Hit rate (%hit): # cache hits / # cache accesses

Cache miss

data is not in the Cache

t_...: time it takes to get the data from below the $

miss *

Miss rate (%miss): # cache misses / # cache accesses

Cacheline or cacheblock or simply line or block

Minimum unit of info that is present/or not in the cache

Dr. V. E. Levent Computer Architecture

Single Core Memory Hierarchy
ON CHIP

Processor
Registers Regs

L1 Caches

L2 Cache

L3 Cache

Main Memory

Disk

Dr. V. E. Levent Computer Architecture

Multi-Core Memory Hierarchy

ON CHIP

Processor Processor Processor Processor

Dr. V. E. Levent Computer Architecture

Memory Hierarchy by the Numbers
CPU clock rates ~0.33ns — 2ns (3GHz-500MHz)

Memory Transistor count Access time Access time in $perGB Capacity
technology cycles in 2021

SRAM

6-8 transistors 0.5-2.5ns 1-3 cycles S4k 256 KB
(on chip)
SRAM 1.5-30 ns 5-15 cycles S4k 32 MB
(off chip)
DRAM 1 transistor 50-70 ns 150-200 cycles $10-S20 8 GB
(needs refresh)
SSD (Flash) 5k-50k ns Tens of $0.75-$1 512 GB
thousands

Dr. V. E. Levent Computer Architecture

Basic Cache Design

Direct Mapped Caches

Dr. V. E. Levent Computer Architecture

16 Byte Memory MEMORY

addr
0000
0oLl B
load 1100 2 rl 0010
ool b
0100
0101
0110
0111
* Byte-addressable memory 1000
e 4 address bits = 16 bytes total 1001
1010
b addr bits = 2P bytes in memory lo11

=

1111
Dr. V. E. Levent Computer Architecture

4-Byte, Direct Mapped Cache i

CACHE
index data
XXXX
< Cache entry
= row
= (cache) line
= (cache) block

Block Size: 1 byte

Direct mapped:
* Each address maps to 1 cache block
* 4 entries 2 2 index bits (2" = n bits)

Dr. V. E. Levent Computer Architecture

4-Byte, Direct Mapped Cache MEMORY

tag|index
XXXX

CACHE

tag data

Tag: minimalist label/address

address = tag + index

Dr. V. E. Levent Computer Architecture

4-Byte, Direct Mapped Cache

MEMORY

CACHE

V tag data

el X
e x

T
e %

One last tweak: valid bit

B
IR
e]
L7
g

Dr. V. E. Levent Computer Archite

Simulation #1 of a 4-byte, DM Cache

MEMORY

B
IR
M

tag
I 0

1111

Dr. V. E. Levent Computer Archite ™

Simulation #1 of a 4-byte, DM Cache MEMORY

B
IR
e]
L7
g

Dr. V. E. Levent Computer Archite

Block Diagram 4-entry, direct mapped Cache

CACHE

V tag data

00| itiooo

o ol Totonow | Great!
5 oooooooo | Are we done?
8

6 1010 0101

data

Hit!

Dr. V. E. Levent Computer Architecture

MEMORY

Simulation #2: 4-byte, DM Cache

B
D
0
P
Q.

Dr. V. E. Levent Computer Archite

Simulation #2: 4-byte, DM Cache

Dr. V. E. Levent Computer Archite

MEMORY
data

MEMORY

Simulation #2: 4-byte, DM Cache

V tag data

B

o5

B
D
N

— = |ndex
N tag
- o[o

lllO

llll

Dr. V. E. Levent Computer Archite

MEMORY

Simulation #2: 4-byte, DM Cache

Dr. V. E. Levent Computer Archite

MEMORY

data

Simulation #2: 4-byte, DM Cache

Dr. V. E. Levent Computer Archite

Simulation #2: 4-byte, DM Cache

Dr. V. E. Levent Computer Archite

MEMORY

Simulation #2: 4-byte, DM Cache

B
D
0
P
Q0

Dr. V. E. Levent Computer Archite

Simulation #2: 4-byte, DM Cache

load
load
load
load

1100
1101
0100
1100

CACHE

V tag data
ul o

opml ot
s x

Miss

Disappointed!

Miss

Miss @
Miss

Dr. V. E. Levent Computer Archite

MEMORY

B
D
0
P
Q0

Reducing Misses
by Increasing Block Size

* Leveraging Spatial Locality

Dr. V. E. Levent Computer Architecture

MEMORY

Increasing Block Size

D
0

Dr. V. E. Levent Computer Architecture

Simulation #3: 8-byte, DM Cache

V tag data

B
D
M

111

Dr. V. E. Levent Computer Architecture

Simulation #3: 8-byte, DM Cache

B
D
M

=
-
-

Dr. V. E. Levent Computer Architecture

Simulation #3: 8-byte, DM Cache

=
-
-

Dr. V. E. Levent Computer Architecture

B
D
0
P
0

Simulation #3: 8-byte, DM Cache

=
-
-

Dr. V. E. Levent Computer Architecture

Simulation #3: 8-byte, DM Cache

=
-
-

Dr. V. E. Levent Computer Architecture

Simulation #3: 8-byte, DM Cache

=
-
-

Dr. V. E. Levent Computer Architecture

B
D
0
P
0

Simulation #3: 8-byte, DM Cache

B
D
0
P
0

Dr. V. E. Levent Computer Architecture

Removing Conflict Misses
with Fully-Associative Caches

Dr. V. E. Levent Computer Architecture

MEMORY

data

8 byte, fully-associative Cache

CACHE

V tag data V tag data V tag data V tag data

What should the offset be?

=

nat should the index be?

What should the tag be?

Dr. V. E. Levent Computer Architecture

Simulation #4: 8-byte, FA Cache

V tag data V tag data

[0Jooo] x| x O
t*

XXX

CACHE

x| x J0

V tag data V tag data

XXX

-
-

Dr. V. E. Levent Computer Architecture

MEMORY

data

[0l X | X

Simulation #4: 8-byte, FA Cache

V tag data V tag data

0]

XXX

*

CACHE

x| x J0

XXX

=)
N

V tag data V tag data

[0l X | X

Dr. V. E. Levent Computer Architecture

MEMORY

B
| D
o
P
_Q

Simulation #4: 8-byte, FA Cache

V tag data V tag data

0]

XXX

*

CACHE

x| x J0

XXX

-
-

V tag data V tag data

[0l X | X

Dr. V. E. Levent Computer Architecture

W13\ [0]:4%
data

Simulation #4: 8-byte, FA Cache

V tag data V tag data

a

010

CACHE

HiE O

XXX

*

-
-

V tag data V tag data

[0l X | X

Dr. V. E. Levent Computer Architecture

MEMORY

B
| D
o
P
_Q

Pros and Cons of Full Associativity

+ No more conflicts!
+ Excellent utilization!

But either:
Parallel Reads

— lots of reading!
Serial Reads

— lots of waiting

Dr. V. E. Levent

Computer Architecture

Pros & Cons

Direct Mapped Fully Associative

SRAM Overhead Less More

Speed Faster Slower

Scalability Very Not Very

Hit Rate High

Dr. V. E. Levent Computer Architecture

Reducing Conflict Misses
with Set-Associative Caches

Not too conflict. Not too slow.
... Just Right!

Dr. V. E. Levent Computer Architecture

8 byte, 2-way set associative Cache

CACHE

V tag data V tag data

O OE
o[l c i o ool Pla

What should the offset be?

nat should the index be?

=

What should the tag be?

Dr. V. E. Levent Computer Architecture

MEMORY

8 byte, 2-way set associative Cache

CACHE

V tag data ' V‘ tag data
[of0d] x| x BHol(xd X | X
0] 0| x| X Ralolm| X | X

111

Dr. V. E. Levent Computer Architecture

MEMORY

8 byte, 2-way set associative Cache

CACHE

V tag data V tag data
» 0NN
0] o | x| X R0l X | X

111

B
D
0
P
_Q

Dr. V. E. Levent Computer Architecture

MEMORY
data

8 byte, 2-way set associative Cache

CACHE

0100
V tag data V tag data 0101

L0 v 1o BYofw] x| x
0o x| xR0l X 1 x

Miss
Hit!

Miss

111

Dr. V. E. Levent Computer Architecture

MEMORY

8 byte, 2-way set associative Cache

CACHE

V tag data V tag data

L0 v o RN e f o
CEI S « O

Miss
Hit!
Miss
Hit!

111

B
D
0
P
_Q

Dr. V. E. Levent Computer Architecture

24 byte, 3-way set associative Cache

5 bit address
2 byte block size
24 byte, 3-Way Set Associative CACHE

tag data

/4

X
X
X
X

Y
? Y
? Y
? / Y’

C

Dr. V. E. Levent Computer Architecture

24 byte, 3-way set associative Cache

5 bit address
2 byte block size
24 byte, 3-Way Set Associative CACHE

V tag data V tag data V tag data

0] 2] X" | ¥
? 77 |
|

pad

| x v o[w1y
[x v o[[x iy
| X v

pad

0] 2] X* | ¥

0
0
0
0 0L 2l X" | ¥

|

Dr. V. E. Levent Computer Architecture

Eviction Policies

Which cache line should be evicted from the cache to make room for a
new line?

* Direct-mapped: no choice, must evict line selected by index

* Associative caches
 Random: select one of the lines at random
* Round-Robin: similar to random
* FIFO: replace oldest line
* LRU: replace line that has not been used in the longest time

Dr. V. E. Levent Computer Architecture

Misses: the Three C’s

* Cold (compulsory) Miss:

never seen this address before
e Conflict Miss:
cache associativity is too low

* Capacity Miss:
cache is too small

Dr. V. E. Levent Computer Architecture

Miss Rate vs. Block Size

Block size

Dr. V. E. Levent Computer Architecture

Block Size Tradeoffs

 For a given total cache size,

Larger block sizes mean....
» fewer lines
* so fewer tags, less overhead
 and fewer cold misses (within-block “prefetching”)
* But also...
» fewer blocks available (for scattered accesses!)
* so more conflicts
 can decrease performance if working set can’t fitin S
 and larger miss penalty (time to fetch block)

Dr. V. E. Levent Computer Architecture

Miss Rate vs. Associativity

Miss rate

8 KiB R

32 KiB TTeAKEB

128 KiB

One-way Two-way Four-way Eight-way
Associativity

Dr. V. E. Levent Computer Architecture

Which caches get what properties?

— 0 *
tavg - thit + % Omiss tmiss

Design with

Fast)]
speed in mind
L1 Caches
|2 Cache More Associatiye
Bigger Block Sizes
L3 Cache Larger Capacity
Design with miss
Big rate in mind

Dr. V. E. Levent Computer Architecture

2-Way Set Associative Cache (Reading)

Tag Index Offset

line select
64bytes
' word select
hit? data 320t

Dr. V. E. Levent Computer Architecture

3-Way Set Associative Cache (Reading)

Tag Index Offset

line select

64bytes

' word select
hit? data 320

Dr. V. E. Levent Computer Architecture

Performance Calculation with S Hierarchy

— 0 *
 Parameters tavg B thit + /Omiss tmiss

* Reference stream: all loads
* DS: t,. = 1ns, %,.... = 5%
* L2:t,, = 10ns, %, = 20% (local miss rate)
* Main memory: t,.. = 50ns
* Whatis t, ¢ without an L2?
y tmissDS =
y tang$=
* Whatist,,
* tmissD$ =
* Lgn=
* tangS=

$ with an L2?

Dr. V. E. Levent Computer Architecture

Performance Calculation with S Hierarchy

=t.. % . *t .

* Parameters tavg thlt + /Omlss tmlss

e Reference stream: all loads

* DS: t,. = 1ns, %,.... = 5%

* L2:t,, = 10ns, %, = 20% (local miss rate)

* Main memory: t,, = 50ns
* Whatis t, ¢ without an L2?

* tmlssDS thitM

* Tavgps = thitns T Pomissps thin = 1NS+(0.05*50ns) = 3.5ns
* Whatis t, ¢ with an L2?

: :missD,'i_= tangZ

¢ t:i: = thitL2+O/ missLZ*thitM - lOI’lS"‘(O 2*50ns) =20ns

thitps + YPomissps Lavgro = 1NS+(0.05*20ns) = 2ns

Dr. V. E. Levent Computer Architecture

Performance Summary

Average memory access time (AMAT) depends on:
* cache architecture and size
e Hit and miss rates

* Access times and miss penalty

Cache design a very complex problem:
Cache size, block size (aka line size)
Number of ways of set-associativity (1, N, o)
Eviction policy
Number of levels of caching, parameters for each
Separate |-cache from D-cache, or Unified cache
Prefetching policies / instructions

Write policy

Dr. V. E. Levent Computer Architecture

IELGENEY,

Direct Mapped -2 fast, but low hit rate
Fully Associative = higher hit cost, higher hit rate
Set Associative 2 middleground

Cache performance is measured by the average memory access time
(AMAT), which depends cache architecture and size, but also the access
time for hit, miss penalty, hit rate.

Dr. V. E. Levent Computer Architecture

What about Stores?

We want to write to the cache.

If the data is not in the cache?
Bring it in. (Write allocate policy)

Should we also update memory?
* Yes: write-through policy
* No: write-back policy

Dr. V. E. Levent Computer Architecture

Write-Through Cache

120 |
lruV tag data _
B 150 |

173 |

33 |

28 |

225 |

Dr. V. E. Levent Computer Architecture

Write-Through (REF 1)

IruV tag data

110

210

Dr. V. E. Levent Computer Architecture

Write-Through (REF 1)

IruV tag data

71
01 78
29 162
33 |
X0 28 |
x1 “
X2
X3
225 |

Dr. V. E. Levent Computer Architecture

Write-Through (REF 2)

IruV tag data

71
01 78
29 162
33 |
X0 28 |
x1 “
X2
X3
225 |

Dr. V. E. Levent Computer Architecture

Write-Through (REF 2)

IruV tag data

T

1 78
29 e
B
s
s

Dr. V. E. Levent Computer Architecture

Write-Through (REF 3)

IruV tag data

01

Dr. V. E. Levent

78
29

71

210

Computer Architecture

Write-Through (REF 3)

IruV tag data

Dr. V. E. Levent

173

~
(IR

173

210

Computer Architecture

Write-Through (REF 4)

IruV tag data

Dr. V. E. Levent

(IR
N
w

[EEY
~
|
/

17

w

210

Saca

Computer Architecture

Write-Through (REF 4)

IruV tag data

Dr. V. E. Levent Computer Architecture

Write-Through (REF 4)

IruV tag data

11 173
29

29

Dr. V. E. Levent Computer Architecture

Write-Through (REF 5)

IruV tag data

11

Dr. V. E. Levent Computer Architecture

Write-Through (REF 6)

IruV tag data

01

Dr. V. E. Levent Computer Architecture

Write-Through (REF 6)

IruV tag data

Dr. V. E. Levent

~
(IR

173

210

Computer Architecture

Write-Through (REF 7)

IruV tag data

11

Dr. V. E. Levent Computer Architecture

Write-Through (REF 7)

IruV tag data

01 /101

Dr. V. E. Levent

~
(IR

173

210

Computer Architecture

Summary: Write Through

Write-through policy with write allocate

. Cache miss: read entire block from memory
. Write: write only updated item to memory
. Eviction: no need to write to memory

Dr. V. E. Levent Computer Architecture

Next Goal: Write-Through vs. Write-Back

What if we DON’T to write stores immediately to memory?

Keep the current copy in cache, and update memory when data is evicted
(write-back policy)
Write-back all evicted lines?

No, only written-to blocks

Dr. V. E. Levent Computer Architecture

Write-Back Meta-Data (Valid, Dirty Bits)

V =1 means the line has valid data

D = 1 means the bytes are newer than main memory
When allocating line:

« SetV=1,D=0,fillin Tag and Data

When writing line:

e SetD=1

* When evicting line:

e IfD=0:justsetV=0

 IfD=1:write-back Data, thensetD=0,V=0

Dr. V. E. Levent Computer Architecture

Write-back Example

* Example: How does a write-back cache work?
* Assume write-allocate

Dr. V. E. Levent Computer Architecture

Handling Stores (Write-Back)

16 byte, byte-addressed memory
4 btye, fully-associative cache:
2-byte blocks, write-allocate
4 bit addresses:
3 bit tag, 1 bit offset
123
Iru V d tag data
;

Dr. V. E. Levent Computer Architecture

Write-Back (REF 1)

Iru V d tag data

1

Dr. V. E. Levent

Computer Architecture

120
123

~
(IR

150

173

Write-Back (REF 1)

Iru V d tag data

0

Dr. V. E. Levent

Computer Architecture

120
123

~
(AR

150

173

Write-Back (REF 2)

Iru V d tag data

0

Dr. V. E. Levent

Computer Architecture

120
123

~
[ERY

150

173

Write-Back (REF 2)

Iru V d tag data

1

Dr. V. E. Levent

Computer Architecture

120
123

~
(AR

150

173

Write-Back (REF 3)

Iru V d tag data

1

Dr. V. E. Levent

~
(IR

173

210

Computer Architecture

Write-Back (REF 3)

Hit

Iru V d tag data

Dr. V. E. Levent

Computer Architecture

120
123

(IR

150

Write-Back (REF 4)

Hit

Iru V d tag data

Dr. V. E. Levent

~
(IR

150
162
173

210

Computer Architecture

Write-Back (REF 4)

Hit

Iru V d tag data

0 1

Dr. V. E. Levent

71

Computer Architecture

=

162

210

Write-Back (REF 4)

Hit

120
123

lru V d tag data

~
(IR

150
162
173

210

Dr. V. E. Levent Computer Architecture

Write-Back (REF 5)

Dr. V. E. Levent

Computer Architectu

re

~
(IR

173

210

Write-Back (REF 5)

Dr. V. E. Levent

~
(IR

173

210

Computer Architecture

Write-Back (REF 5)

Hit

<<

Iru V d tag data

0 0

Dr. V. E. Levent

~
(IR

150
162
173

210

Computer Architecture

Write-Back (REF 6)

Hit

<<

Iru V d tag data

0 0

101

1 010

Dr. V. E. Levent

~
(IR

150
162
173

210

Computer Architecture

Write-Back (REF 6)

Iru V d tag data

0 0

101

1 010

Dr. V. E. Levent

120
123

150
162

(IR

Computer Architecture

Write-Back (REF 7)

g
M Iru V d tag data
e o [F101 6
1 010

33

2w

T

Dr. V. E. Levent Computer Architecture

Write-Back (REF 7)

Iru V d tag data

0

Dr. V. E. Levent

120
123

150
162

(IR

Computer Architecture

Write-Back (REF 8,9)

Cheap subsequent
updates!

Iru V d tag data

0 1 101 29

1 010

150

210

Dr. V. E. Levent Computer Architecture

Write-Back (REF 8,9)

Hit
M
M
Hit
::: lru V d tag data
Hit o il [102) 29
1 010
33
28
225

Dr. V. E. Levent Computer Architecture

How Many Memory References?

Write-back performance

 How many reads?
 Each miss (read or write) reads a block from mem
* 4 misses 2 8 mem reads
* How many writes?
 Some evictions write a block to mem
* 1dirty eviction = 2 mem writes

Dr. V. E. Levent Computer Architecture

Write-back vs. Write-through Example

Assume: large associative cache, 16-byte lines

N 4-byte words

for (i=1; i<n; i++)
A[o] += A[1i];

for (i=0; i<n; i++)
B[i] = A[i]

Write-thru: n reads (n/4 cache lines)
n writes

Write-back: n reads (n/4 cache lines)

4 writes (one cache line)

Write-thru: nreads (n/4 cache lines)
n writes

Write-back: n reads (n/4 cache lines)

n writes (n/4 cache lines)

Dr. V. E. Levent Computer Architecture

So is write back just better?

Short Answer: Yes (fewer writes is a good thing)
Long Answer: It's complicated.

* Evictions require entire line be written back to memory (vs. just the
data that was written)

* Write-back can lead to incoherent caches on multi-core processors

Dr. V. E. Levent Computer Architecture

Optimization: Write Buffering

* Q: Writes to main memory are slow!

* A: Use a write-back buffer
* A small queue holding dirty lines
e Add to end upon eviction
 Remove from front upon completion

* Q: When does it help?
* A: short bursts of writes (but not sustained writes)
 A: fast eviction reduces miss penalty

Dr. V. E. Levent Computer Architecture

Write-through vs. Write-back

* Write-through is slower
* Butsimpler (memory always consistent)

* Write-back is almost always faster
 write-back buffer hides large eviction cost
* But what about multiple cores with separate caches
but sharing memory?
* Write-back requires a cache coherency

protocol

* Inconsistent views of memory

* Need to “snoop” in each other’s caches

* Extremely complex protocols, very hard to get right

Dr. V. E. Levent Computer Architecture

Cache-coherency
Q: Multiple readers and writers?

A: Potentially inconsistent views of memory
A’ CPU CPU CPU CPU

ALl L1 ALl L1 1 L1 1 L1

JA L2 L2

net A Mem disk

Cache coherency protocol

May need to snoop on other CPU’s cache activity
Invalidate cache line when other CPU writes

Flush write-back caches before other CPU reads

Or the reverse: Before writing/reading...

Extremely complex protocols, very hard to get right

Dr. V. E. Levent Computer Architecture

IELGENEY,

* Write-through policy with write allocate
e Cache miss: read entire block from memory
 Write: write only updated item to memory
* Eviction: no need to write to memory
 Slower, but cleaner

* Write-back policy with write allocate

 Cache miss: read entire block from memory
e **But may need to write dirty cacheline first**
 Write: nothing to memory

Eviction: have to write to memory entire cacheline because don’t know what is
dirty (only 1 dirty bit)

e Faster, but more complicated, especially with multicore

Dr. V. E. Levent Computer Architecture

Cache Conscious Programming

// H=6, W= 10
int A[H][W];
for(x=0; x < W; Xx++)
for(y=0; y < H; y++)
sum += A[y][x];

YOUR
MIND

MEMORY

Dr. V. E. Levent Computer Architecture

Cache Conscious Programming

// H=6, W= 10
int A[H][W];
for(x=0; x < W; X++)
for(y=0; y < H; y++)
sum += A[y][x];

EEEEEEEEE
DEEEEEREEN
OREE YOUF

Every access a cache miss! (unless MEMORY
entire matrix fits in cache)

Dr. V. E. Levent Computer Architecture

Cache Conscious Programming
// H=6, W= 10
int A[H][W];
for(x=0; x < H; x++)
for(y=0; y < W; y++)
sum += A[x][y];

1]2f3]4als|6]7)8] |
EEEEEENERE
HEEN

YOUR
MIND

 Blocksize=4 - 75% hit rate
* Blocksize=8 - 87.5% hit rate MEMORY
 Blocksize=16 = 93.75% hit rate

* And you can easily prefetch to warm the cache
Dr. V. E. Levent Computer Architecture

A Real Example

e Dual 32K L1 Instruction caches
* 8-way set associative
* 64 sets
* 64 byte line size

e Dual 32K L1 Data caches

e Same as above

* Single 6M L2 Unified cache
e 24-way set associative (!!!)
* 4096 sets
* 64 byte line size

* 4GB Main memory
e 1TB Disk

Dr. V. E. Levent Computer Architecture

