Computer Architecture

Week 13: Virtual Memory

Fenerbahce University

Professor & TAs

Prof: Dr. Vecdi Emre Levent
Office: 311
Email: emre.levent@fbu.edu.tr

TA: Ars. Gor. Ugur Ozbalkan
Office: 311

Email: ugur.ozbalkan@fbu.edu.tr

Dr. V. E. Levent Computer Architecture

Course Plan

* Virtual Memory

e System Calls

Dr. V. E. Levent Computer Architecture

Big Picture: Multiple Processes
How to run multiple processes?

* Time-multiplex a single CPU core (multi-tasking)
 Web browser, skype, office, ... all must co-exist

* Many cores per processor (multi-core)

or many processors (multi-processor)
* Multiple programs run simultaneously

Dr. V. E. Levent Computer Architecture

 CPU address/data bus... Y

Processor & Memory

* ...routed through caches

... to main memory
= Simple, fast, but...

Dr. V. E. Levent Computer Architecture

Stack

Heap

Data

Text

Multiple Processes

* Q:What happens when another program is
executed concurrently on another processor?

 A: The addresses will conflict

CPU

Stack

CPU

Heap

= Even though, CPUs may take

turns using memory bus

Dr. V. E. Levent Computer Architecture

Data

Text

Multiple Processes

* Q: Can we relocate
second program?

CPU

CPU

Dr. V. E. Levent Computer Architecture

Stack

Heap

Data

Text

Solution? Multiple processes/processors

* Q: Can we relocate second program?

* A:Yes, but...
= What if they don’t fit?

Stack

CPU

= What if not contiguous?

= Need to recompile/re

link?

Data

Stack

Heap

CPU

Heap

Dr. V. E. Levent Computer Architecture

Data

Text

Text

Big Picture: (Virtual) Memory

Process 1

Process 2

Dr. V. E. Levent

Give each process an
illusion that it has
exclusive access to entire
main memory

Computer Architecture

But In Reality...

Process 1

Process 2

Physical Memory
Dr. V. E. Levent Computer Architecture

How do we create the illusion?

D |
Process 1 _
— Db
B |
E

Process 2
a4
H - F

F

Dr. V. E. Levent Computer Architecture

How do we create the illusion?

Process 1

Process 2

Dr. V. E. Levent Computer Architecture

How do we create the illusion?

Process 1

Process 2

Dr. V. E. Levethure

How do we create the illusion?

Process 1

Process 2

A

C

=

Virtual Memory

Disk

e
— gt
=

LN\

Dr. V. E. Levent

“~Computer Architecture

Physical Memory

Big Picture: (Virtual) Memory

* From a process’s perspective -

Process 1

Virtual Memory

= Process only sees the virtual memory
v'Contiguous memory

Dr. V. E. Levent Computer Architecture

Big Picture: (Virtual) Memory

* From a process’s perspective —

Process 1

* Process only sees the virtual memory

v’ Contiguous memory
v"No need to recompile - only mappings need to be updated

Dr. V. E. Levent Computer Architecture

Big Picture: (Virtual) Memory

* From a process’s perspective -

Process 1

= Process only sees the virtual memory
v'Contiguous memory

v'"No need to recompile - only mappings need to be
updated

Dr. V. E. Levent Computer Architecture

Big Picture: (Virtual) Memory

* From a process’s perspective -

Process 1

= Process only sees the virtual memory
v'Contiguous memory
v'"No need to recompile - only mappings need to be updated

Dr. V. E. Levent Computer Architecture

Next Goal

* How does Virtual Memory work?

* How do we create the “map” that maps a virtual address generated
by the CPU to a physical address used by main memory?

Dr. V. E. Levent Computer Architecture

Virtual Memory Agenda

What is Virtual Memory?

How does Virtual memory work?
 Address Translation

e Overhead

* Paging

e Performance

Dr. V. E. Levent Computer Architecture

Virtual Memory

Store B at 2 Hidden from the process | NGNININB 14
Load data at 2 o5 _ 13
B -
el]
Process 1| ° t
B 2 B
1 B -
oa _ EE
©
- B -
Virtual address . ©
(48]
oo 6 =
B
B - -
: I
Process 2| I -
1 B
Store H at 2 0 _ _ 1
_ 0

Virtual Memory
{just a set of numbers (addresses); Physical Memory

does not exist physically} _
Dr. V. E. Levent Computer Architecture

~J)

Picture Memory as...

Segments: Page Array:
addr Oxfffffffc system
pagen
oxffffffff recerved oxfffffooo
_ 9x80000000
B offffffc oxffffeoo0
stack
- ment -
. each 523
pageS
- ex@ee@4e@@-
- 9x10000000 -
9x00003000
@x@@@eze@@-
- 0x00001000
system
reserved
0x00000000 v 0x00000000

0Xx00000000

Dr. V. E. Levent Computer Architecture

A Little More About Pages

Page Array: Memory size = depends on system
oxfEFffope hD say 4GB
o FEFFan00 Page size = 4KB (by default)
oxffffdooo Then, # of pages = 2720

Any data in a page # 2 has address of the form:

- Ox00002xXX
@X@@@@4@@@- Igg\évegr 12 bits specify which byte you are in the
exeeee3eee- 0XxP0002200 = 0010 0000 000V

= byte 512

upper bits = page number (PPN)
lower bits = page offset

exeeeezeeem

0Xx00001000

0Xx00000000

Dr. V. E. Levent Computer Architecture

Page Table: Data structure to store mapping

1 Page Table per process
Lives in Memory, i.e. in a page (or more...)
Location stored in Page Table Base Register

0X00008FFF 9
8
7
6
5
0x0000800C ©POBBO01 4
0x00008008 90000004 3
0x00008004 ©0000005 2
0x00008000 @G0B0V 1
0

Physical Address

PTBR 0x00008000 Space

Dr. V. E. Levent Computer Architecture

Address Translator;: MMU

* Programs use virtual addresses
9 e Actual memory uses physical

MMITIN. g
7 addresses

MNN 6

I -
BENEEN 1+ Memory Management Unit (MMU)

3
N2 ¢ HW structure
MRS . Translates virtual © physical

Program #1

MMU

A -IRRN 0

2 DA Physical address onthefly
I M Address Space

0 m Memory

DRAM
Program #2 ()

Dr. V. E. Levent Computer Architecture

Simple Page Table Translation

Ox00008FFF ©x10045 0xC20A3000
paddr
0x9000000c ©xC20A3
0x90000008 ©x4123B 0x90000000
0x90000004 ©x10044
0x90000000 ©x00OLO 0x4123BABC
0x4123B000
31 12 11 0
vaddr
0x10045000
index into the page table page offset
0x10044000
PTBR 0x90000000 0x00000000

Memory

Assuming each page = 4KB
Dr. V. E. Levent Computer Architecture

Less Simple Page Table

Physical Page
V RWX Number

0

1110 O0OxC20A3

0

0

1100 OxC20A3

1 0x4123B

1 0x10044

0 0x4123B000
Process tries to access a page

without proper permissions 010045000

Segmentation Fault
Example: 010044000

Write to read-only? = process killed ox00000000

Dr. V. E. Levent Computer Architecture

Wait, how big is this Page Table?

page table[2%9] = 8x22%° =223 bytes
(Page Table

8 MB in size)

How many pages in memory will the page table take up?

223 /212 =211 2K pages! Assuming each page = 4KB

Dr. V. E. Levent Computer Architecture

Paging

What if process requirements > physical memory?
Virtual starts earning its name

Memory acts as a cache for secondary storage (disk)
e Swap memory pages out to disk when not in use
* Page them back in when needed

Courtesy of Temporal & Spatial Locality (again!)
* Pages used recently mostly likely to be used again

More Meta-Data:
 Dirty Bit, Recently Used, etc.
 OS may access this meta-data to choose a victim

Dr. V. E. Levent Computer Architecture

Pa ging Physical Page

Example: accessing address beginning
with 0x00003 (PageTable[3]) resultsin a
Page Fault which will page the data in
from disk sector 200

0xC20A3000 _
VRWXD Number "
0 —_
11010 0x10045
0 ~ 0x90000000
0 - I
0x4123B000
0) O disk sector 200 e
0 O disk sector 25
11101 0x00000 0x10045000 D
0 _
0x00000000 _
200
25

Dr. V. E. Levent Computer Architecture

Page Fault

Valid bit in Page Table =0
— means page is not in memory

OS takes over:

* Choose a physical page to replace
* “Working set”: refined LRU, tracks page usage

* |f dirty, write to disk

e Read missing page from disk
* Takes so long (~¥10ms), OS schedules another task

Performance-wise page faults are really bad!

Dr. V. E. Levent Computer Architecture

Watch Your Performance Tank!

For every instruction:

 MMU translates address (virtual = physical)
* Uses PTBR to find Page Table in memory
* Looks up entry for that virtual page

* Fetch the instruction using physical address
* Access Memory Hierarchy (IS 2 L2 2> Memory)

* Repeat at Memory stage for load/store insns

* Translate address
* Now you perform the load/store

Dr. V. E. Levent Computer Architecture

Performance

 Virtual Memory Summary

* PageTable for each process:
* Page
e Single-level (e.g. 4MB contiguous in physical memory)
* or multi-level (e.g. less mem overhead due to page table),

» every load/store translated to physical addresses
* page table miss: load a swapped-out page and retry instruction, or kill program

* Performance?

* terrible: memory is already slow
translation makes it slower

e Solution?
* A cache, of course

Dr. V. E. Levent Computer Architecture

Next Goal

* How do we speedup address translation?

Dr. V. E. Levent Computer Architecture

Translation Lookaside Buffer (TLB)

 Small, fast cache

* Holds VPN->PPN translations

* Exploits temporal locality in pagetable
* TLB Hit: huge performance savings

e TLB Miss: invoke TLB miss handler

» Put translation in TLB for later

VPN
VPN
U\

Dr. V. E. Levent Computer Architecture

TLB Parameters

Typical
 very small (64 — 256 entries) =2 very fast
e fully associative, or at least set associative

Example: Intel Nehalem TLB

* 128-entry L1 Instruction TLB, 4-way LRU
* 64-entry L1 Data TLB, 4-way LRU

e 512-entry L2 Unified TLB, 4-way LRU

Dr. V. E. Levent Computer Architecture

TLB to the Rescue!

For every instruction:

* Translate the address (virtual = physical)
 CPU checks TLB

* That failing, walk the Page Table
e Use PTBR to find Page Table in memory
* Look up entry for that virtual page
e Cache theresultin the TLB

* Fetch the instruction using physical address
* Access Memory Hierarchy (IS =2 L2 2 Memory)

* Repeat at Memory stage for load/store insns
* CPU checks TLB, translate if necessary
* Now perform load/store

Dr. V. E. Levent Computer Architecture

