
Computer Architecture

Fenerbahçe University

Week 13: Virtual Memory
and System Calls

Computer ArchitectureDr. V. E. Levent

Prof: Dr. Vecdi Emre Levent

Office: 311

Email: emre.levent@fbu.edu.tr

TA: Arş. Gör. Uğur Özbalkan

Office: 311

Email: ugur.ozbalkan@fbu.edu.tr

Professor & TAs

Computer ArchitectureDr. V. E. Levent

Course Plan

• Virtual Memory

• System Calls

Computer ArchitectureDr. V. E. Levent

Big Picture: Multiple Processes

How to run multiple processes?

• Time-multiplex a single CPU core (multi-tasking)
• Web browser, skype, office, … all must co-exist

• Many cores per processor (multi-core)
or many processors (multi-processor)
• Multiple programs run simultaneously

Computer ArchitectureDr. V. E. Levent

Processor & Memory

• CPU address/data bus...

• … routed through caches

• … to main memory
▪ Simple, fast, but…

CPU

Text

Data

Stack

Heap

Memory
0x000…0

0x7ff…f

0xfff…f

$$

Computer ArchitectureDr. V. E. Levent

Multiple Processes

• Q: What happens when another program is
executed concurrently on another processor?

• A: The addresses will conflict
▪ Even though, CPUs may take

turns using memory bus

CPU

Text

Data

Stack

Heap

Memory

CPU

Text

Data

Stack

Heap

0x000…0

0x7ff…f

0xfff…f

$$
$$

Computer ArchitectureDr. V. E. Levent

Multiple Processes

CPU

Text

Data

Stack

Heap

Memory

CPU

Text

Data

Stack

Heap

0x000…0

0x7ff…f

0xfff…f

$$
$$

• Q: Can we relocate
second program?

Computer ArchitectureDr. V. E. Levent

Solution? Multiple processes/processors

• Q: Can we relocate second program?

• A: Yes, but…
▪ What if they don’t fit?

▪ What if not contiguous?

▪ Need to recompile/relink?

▪ …

CPU

Text

Data

Stack

Heap

Memory

CPU

Text

Data

Stack

Heap

Computer ArchitectureDr. V. E. Levent

Big Picture: (Virtual) Memory

Process 1 A

B

C

D

3
2
1
0

Process 2
E

F

G

H

3
2
1
0

Give each process an
illusion that it has
exclusive access to entire
main memory

Computer ArchitectureDr. V. E. Levent

But In Reality…

Process 1

Process 2

C

B

A

D

E

F

G

H

Physical Memory

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Computer ArchitectureDr. V. E. Levent

How do we create the illusion?

Process 1 A

B

C

D

3
2
1
0

Process 2
E

F

G

H

3
2
1
0

C

B

A

D

E

F

G

H

Physical Memory

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Computer ArchitectureDr. V. E. Levent

How do we create the illusion?

Process 1 A

B

C

D

3
2
1
0

Process 2
E

F

G

H

3
2
1
0

C

B

A

D

E

F

G

H

Physical Memory

Virtual Memory
(just a concept; does not exist physically)

Virtual address
Memory

management unit
(MMU) takes care

of the mapping

Map virtual
address to

physical address

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

P
h

ys
ic

al
 a

d
d

re
ss

Computer ArchitectureDr. V. E. Levent

How do we create the illusion?

Process 1 A

B

C

D

3
2
1
0

Process 2
E

F

G

H

3
2
1
0

C

B

A

D

E

F

G

H

Physical Memory

Virtual Memory
(just a concept; does not exist physically)

Virtual address

Process 1 wants to
access data C

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

P
h

ys
ic

al
 a

d
d

re
ss

Process 1 thinks it
is stored at addr 1

So CPU generates
addr 1

This addr is
intercepted by

MMU
MMU knows this
is a virtual addr

MMU looks at the
mapping

Virtual addr 1 ->
Physical addr 9
Data at Physical
addr 9 is sent to

CPU
And that data is

indeed C!!!

Computer ArchitectureDr. V. E. Levent

How do we create the illusion?

Process 1 A

B

C

D

3
2
1
0

Process 2
E

F

G

H

3
2
1
0

C

B

D

E

G

H

Physical Memory

Virtual Memory

A FDisk

Memory
management unit
(MMU) takes care

of the mapping

Map virtual
address to

physical address

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Computer ArchitectureDr. V. E. Levent

Big Picture: (Virtual) Memory

• From a process’s perspective –

▪ Process only sees the virtual memory
✓Contiguous memory

Process 1 A

B

C

D

3
2
1
0

Virtual Memory

C

Physical MemoryH
id

d
en

 f
ro

m
 P

ro
ce

ss

Computer ArchitectureDr. V. E. Levent

Big Picture: (Virtual) Memory

• From a process’s perspective –

• Process only sees the virtual memory
✓Contiguous memory

✓No need to recompile - only mappings need to be updated

Process 1 A

B

C

D

3
2
1
0

Virtual Memory

C

Physical MemoryH
id

d
en

 f
ro

m
 P

ro
ce

ss

Computer ArchitectureDr. V. E. Levent

Big Picture: (Virtual) Memory

• From a process’s perspective –

▪ Process only sees the virtual memory
✓Contiguous memory

✓No need to recompile - only mappings need to be
updated

Process 1 A

B

C

D

3
2
1
0

Virtual Memory

C

Physical MemoryH
id

d
en

 f
ro

m
 P

ro
ce

ss

Computer ArchitectureDr. V. E. Levent

Big Picture: (Virtual) Memory

• From a process’s perspective –

▪ Process only sees the virtual memory
✓Contiguous memory

✓No need to recompile - only mappings need to be updated

Process 1 A

B

C

D

3
2
1
0

Virtual Memory

C

Physical Memory

Disk

H
id

d
en

 f
ro

m
 P

ro
ce

ss

Computer ArchitectureDr. V. E. Levent

Next Goal

• How does Virtual Memory work?

• How do we create the “map” that maps a virtual address generated
by the CPU to a physical address used by main memory?

Computer ArchitectureDr. V. E. Levent

Virtual Memory Agenda

What is Virtual Memory?

How does Virtual memory work?
• Address Translation

• Overhead

• Paging

• Performance

Computer ArchitectureDr. V. E. Levent

Virtual Memory

Process 1 3
2
1
0

Process 2 3
2
1
0

Physical Memory

Virtual Memory
{just a set of numbers (addresses);
does not exist physically}

Virtual address

0

1
2

3

4

5

6

7

8

9

10

11

12

13

14

P
h

ys
ic

al
 a

d
d

re
ss

Store B at 2

Store H at 2

∞

∞

Load data at 2

B

B

H

Hidden from the process

Computer ArchitectureDr. V. E. Levent

Picture Memory as… ?

addr data

0xffffffff xaa

…

…

x00

x00

xef

xcd

xab

xff

0x00000000 x00

Byte Array:

0xfffffffc

0x00000000

0x7ffffffc
0x80000000

0x10000000

0x00400000

system
reserved

stack

system
reserved

text

data

heap

Segments:

0x00000000

0xffffe000

0xfffff000

0x00003000

0x00001000

page 0

Page Array:

page 1

page 2

. . .

. . .

page n

0x00002000

0x00004000

Computer ArchitectureDr. V. E. Levent

A Little More About Pages

Memory size = depends on system
say 4GB

Page size = 4KB (by default)

Then, # of pages = 2^20

Any data in a page # 2 has address of the form:
0x00002xxx

Lower 12 bits specify which byte you are in the
page:
0x00002200 = 0010 0000 0000

= byte 512

upper bits = page number (PPN)
lower bits = page offset

0x00000000

0xffffe000

0xfffff000

0x00003000

0x00001000

Page Array:

…

4KB

0x00002000

0x00004000

0xffffd000

Computer ArchitectureDr. V. E. Levent

Page Table: Data structure to store mapping

1 Page Table per process

Lives in Memory, i.e. in a page (or more…)

Location stored in Page Table Base Register

C

B

A

Physical Address
Space

9
8
7
6
5
4
3
2
1
0

PTBR 0x00008000

Assuming each page = 4KB

. . .

00000001
00000004
00000005
000000000x00008000

0x00008004

0x00008008

0x0000800c

0x00008FFF

Computer ArchitectureDr. V. E. Levent

Address Translator: MMU

• Programs use virtual addresses

• Actual memory uses physical
addresses

Memory Management Unit (MMU)

• HW structure

• Translates virtual → physical
address on the fly

A

B

C

Program #1

D

A

B

C

D

Program #2

C

B

A

Physical
Address Space

Memory
(DRAM)

MMU

B

C

D

3
2
1
0

9
8
7
6
5
4
3
2
1
03

2
1
0

Computer ArchitectureDr. V. E. Levent

Simple Page Table Translation

Memory
PTBR 0x90000000

Assuming each page = 4KB

0x10045

. . .

0xC20A3
0x4123B
0x10044

0x000000x90000000

0x90000004

0x90000008

0x9000000c

0x00008FFF

0x00000000

0x90000000

0x10045000

0xC20A3000

0x10044000

0x4123B000

0x00002 0xABCvaddr
0111231

0x4123B 0xABC

paddr

0x4123BABC

index into the page table page offset

Computer ArchitectureDr. V. E. Levent

Less Simple Page Table

V R W X
Physical Page

Number

0
1 1 1 0 0xC20A3
0
0
1 1 0 0 0xC20A3
1 0x4123B
1 0x10044
0

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000

0x10044000

Process tries to access a page
without proper permissions

Segmentation Fault
Example:
Write to read-only? → process killed

Computer ArchitectureDr. V. E. Levent

Wait, how big is this Page Table?

page_table[220] = 8x220 =223 bytes

(Page Table = 8 MB in size)

How many pages in memory will the page table take up?

223 /212 =211 2K pages! Assuming each page = 4KB

Computer ArchitectureDr. V. E. Levent

Paging

What if process requirements > physical memory?

Virtual starts earning its name

Memory acts as a cache for secondary storage (disk)
• Swap memory pages out to disk when not in use
• Page them back in when needed

Courtesy of Temporal & Spatial Locality (again!)
• Pages used recently mostly likely to be used again

More Meta-Data:

• Dirty Bit, Recently Used, etc.

• OS may access this meta-data to choose a victim

Computer ArchitectureDr. V. E. Levent

Paging

Example: accessing address beginning
with 0x00003 (PageTable[3]) results in a
Page Fault which will page the data in
from disk sector 200

V R W X D
Physical Page

Number
0 --
1 1 0 1 0 0x10045
0 --
0 --
0 0 disk sector 200
0 0 disk sector 25
1 1 1 0 1 0x00000
0 --

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000

25
200

Computer ArchitectureDr. V. E. Levent

Page Fault

Valid bit in Page Table = 0
→means page is not in memory

OS takes over:
• Choose a physical page to replace

• “Working set”: refined LRU, tracks page usage

• If dirty, write to disk
• Read missing page from disk

• Takes so long (~10ms), OS schedules another task

Performance-wise page faults are really bad!

Computer ArchitectureDr. V. E. Levent

Watch Your Performance Tank!

For every instruction:
• MMU translates address (virtual → physical)

• Uses PTBR to find Page Table in memory
• Looks up entry for that virtual page

• Fetch the instruction using physical address
• Access Memory Hierarchy (I$ → L2 →Memory)

• Repeat at Memory stage for load/store insns
• Translate address
• Now you perform the load/store

Computer ArchitectureDr. V. E. Levent

Performance

• Virtual Memory Summary
• PageTable for each process:

• Page
• Single-level (e.g. 4MB contiguous in physical memory)
• or multi-level (e.g. less mem overhead due to page table),
• …

• every load/store translated to physical addresses
• page table miss: load a swapped-out page and retry instruction, or kill program

• Performance?
• terrible: memory is already slow

translation makes it slower

• Solution?
• A cache, of course

Computer ArchitectureDr. V. E. Levent

Next Goal

• How do we speedup address translation?

Computer ArchitectureDr. V. E. Levent

Translation Lookaside Buffer (TLB)

• Small, fast cache

• Holds VPN→PPN translations

• Exploits temporal locality in pagetable

• TLB Hit: huge performance savings

• TLB Miss: invoke TLB miss handler
• Put translation in TLB for later

VPN PPN

VPN PPN

VPN PPN

“tag” “data”
CPU

VA

PA

VA

PA
MMU TLB

VA

Computer ArchitectureDr. V. E. Levent

TLB Parameters

Typical

• very small (64 – 256 entries) → very fast

• fully associative, or at least set associative

Example: Intel Nehalem TLB

• 128-entry L1 Instruction TLB, 4-way LRU

• 64-entry L1 Data TLB, 4-way LRU

• 512-entry L2 Unified TLB, 4-way LRU

Computer ArchitectureDr. V. E. Levent

TLB to the Rescue!

For every instruction:
• Translate the address (virtual → physical)

• CPU checks TLB
• That failing, walk the Page Table

• Use PTBR to find Page Table in memory
• Look up entry for that virtual page
• Cache the result in the TLB

• Fetch the instruction using physical address
• Access Memory Hierarchy (I$ → L2 →Memory)

• Repeat at Memory stage for load/store insns
• CPU checks TLB, translate if necessary
• Now perform load/store

