Computer Architecture

Week 14: Parallelism, Multi Core,
Synchronization

Fenerbahcge University

Professor & TAs

Prof: Dr. Vecdi Emre Levent
Office: 311
Email: emre.levent@fbu.edu.tr

TA: Ars. Gor. Ugur Ozbalkan
Office: 311

Email: ugur.ozbalkan@fbu.edu.tr

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Course Plan

e Parallelism
e Multi Core

e Synchronization

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Big Picture: Multicore and Parallelism

compute
jump/branch
targets

memory = register
file > alu [
addr
e memory
E
detect
hazard
Instruction T
Fetch O Execute ©o| Memory

IF/ID ID/EX EX/MEM MEM/WB
Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Big Picture: Multicore and Parallelism

Why do | need four computing cores on my phone?!

memory

Instruction
Fetch

memory

Instruction
Fetch

IF/ID

compute
jump/branch

targets

register

.

detect
hazard

compute
jump/branch
targets

register
file

detect
hazard

memory

Instruction
Fetch

memory

Instruction
Fetch

BilgisayarMimaris

compute
jump/branch
targets

register

detect
hazard

compute
jump/branch
targets

register

B oo

detect
hazard

::
B
— i

Execute Memory

— BLIME

memory

Instruction
Fetch

compuite
jump/branch
tan

register
file

detect
hazard

compuite
jump/branch
i

register
file

compuite
jump/branch
tan

memary register
file

if
Memary Bck

Instruction
Fetch

detect
hazard

Dr. V. E. Levent

register
file

hazard

Instruction -
Fetch

memory

if
Memary Bck

Instruction
Fetch

Bilgisayar Mimarisi — BLM202

Big Picture: Multicore and Parallelism

Why do | need
sixteeen computing
cores on my

phone?!

Instruction
Fetch

rite-
S| Memory | SfBack

detect
hazard
Instruction
Fetch

= < [Write-
S| Memory | Z]Back

EX/MEM MEM/WB

Instruction
Fetch

rite- Instruction
S| Memory | 5] Back Fetch

rite- Instruction
Erecute | 5| Memory | Sfgack Fetch

EX/MEM

Dr. V. E. Levent

detect
hazard
l l rite-
Execute || Memory | Sfpack
EX/MEM

rite-
Execute |G| Memory | Sgack

EX/MEM MEM/WB

rite-
S| Memory |S|gack

detect
hazard

rite-
%] Memory | %|gack

Instruction
Fetch

rite-
S| Memory | SfBack

EX/MEM MEM/WB

detect
hazard
Instruction
Fetch

EX/MEM MEM/WB

Instruction
Fetch

rite-
S| Memory |3S|gack

compute
jumpfbranch
g

regist

i
er =

rite-
5| Memory | Z|gack

EX/MEM

Execute

Bilgisayar Mimarisi — BLM202

detect
hazard
Instruction
Fetch

rite-
S| Memory | SfBack

register
file

i
th

detect
hazard

Instruction
Fetch

= < [Write-
S| Memory | Z]Back

EX/MEM MEM/WB

Instruction
Fetch

rite-
S| Memory |3S|gack

register
file

rite-
5| Memory | Z|gack

Pitfall: Amdahl’s Law

Execution time after improvement =

affected execution time

, + execution time unaffected
amount of improvement

T — Taffected

- = +
improved improvement factor unaffected

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Scaling Example

Workload: sum of 10 scalars, and 10 X 10 matrix sum
e Speed up from 10 to 100 processors?

Single processor: Time = (10 + 100) % t_,,

10 processors
* Speedup = 110/10% t_,

100 processors
* Speedup =110/100 X t_,

Assumes load can be balanced across processors

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

IELGENEY,

Unfortunately, we cannot not obtain unlimited scaling (speedup) by
adding unlimited parallel resources, eventual performance is
dominated by a component needing to be executed sequentially.

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Performance Improvement 101

L | Cycles per Instruction

cycles

instruction

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Clock frequencies have stalled

Darling of performance improvement for decades

Why is this no longer the strategy?
Hitting Limits:

* Pipeline depth

* Clock frequency

* Moore’s Law & Technology Scaling
* Power

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Improving IPC via ILP

Exploiting Intra-instruction parallelism:
. Pipelining (decode A while fetching B)

Exploiting Instruction Level Parallelism (ILP):
. Multiple issue pipeline
e Statically detected by compiler (VLIW)
e Dynamically detected by HW
Dynamically Scheduled (Oo00)

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Instruction-Level Parallelism (ILP)

Pipelining: execute multiple instructions in parallel
Q: How to get more instruction level parallelism?

A: Deeper pipeline
 E.g. 250MHz 1-stage; 500Mhz 2-stage; 1GHz 4-stage; 4GHz 16-stage

Pipeline depth limited by...
* max clock speed (less work per stage = shorter clock cycle)

* min unit of work
* dependencies, hazards / forwarding logic

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Instruction-Level Parallelism (ILP)

Pipelining: execute multiple instructions in parallel
Q: How to get more instruction level parallelism?

A: Multiple issue pipeline

» Start multiple instructions per clock cycle in duplicate stages

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Static Multiple Issue

a.k.a. Very Long Instruction Word (VLIW)

Compiler groups instructions to be issued together
e Packages them into “issue slots”

How does HW detect and resolve hazards?
It doesn’t. © Compiler must avoid hazards

Example: Static Dual-Issue 32-bit RISC-V

* Instructions come in pairs (64-bit aligned)
* One ALU/branch instruction (or nop)
* One load/store instruction (or nop)

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

RISC-V with Static Dual Issue

Two-issue packets
 One ALU/branch instruction
* One load/store instruction
* 64-bit aligned
 ALU/branch, then load/store
* Pad an unused instruction with nop

n ALU/branch IF ID EX MEM WB

n+4 Load/store IF ID EX MEM WB

n+8 ALU/branch IF ID EX MEM WB

n+12 Load/store IF ID EX MEM WB

n+16 ALU/branch IF ID EX MEM WB
n+20 Load/store IF ID EX MEM WB

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Techniques and Limits of Static Scheduling

Goal: larger instruction windows (to play with)
* Predication

* Loop unrolling

* Function in-lining

e Basic block modifications (superblocks, etc.)

Roadblocks
* Memory dependences (aliasing)
 Control dependences

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Speculation
Reorder instructions

. To fill the issue slot with useful work
. Complicated: exceptions may occur

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Optimizations to make it work
Move instructions to fill in nops
Need to track hazards and dependencies

Loop unrolling

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Improving IPC via ILP

Exploiting Intra-instruction parallelism:
. Pipelining (decode A while fetching B)

Exploiting Instruction Level Parallelism (ILP):
Multiple issue pipeline (2-wide, 4-wide, etc.)
e Statically detected by compiler (VLIW)
e Dynamically detected by HW
Dynamically Scheduled (O00)

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Dynamic Multiple Issue

aka SuperScalar Processor (c.f. Intel)
* CPU chooses multiple instructions to issue each cycle
* Compiler can help, by reordering instructions....
* ... but CPU resolves hazards

Even better: Speculation/Out-of-order Execution
* Execute instructions as early as possible
» Aggressive register renaming (indirection to the rescue!)
Guess results of branches, loads, etc.
Roll back if guesses were wrong
Don’t commit results until all previous insns committed

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Dynamic Multiple Issue

Instruction fetch

. In-order issue
and decode unit

Reservation | | Reservation Reservation | | Reservation
station station station station

Floating
point

Out-of-order execute

Com_mit In-order commit
unit

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Effectiveness of OoO Superscalar

It was awesome, but then it stopped improving

Limiting factors?
* Programs dependencies
* Memory dependence detection = be conservative
e e.g. Pointer Aliasing: A[0] += 1, B[0] *= 2;
Hard to expose parallelism
* Still limited by the fetch stream of the static program

Structural limits
 Memory delays and limited bandwidth

Hard to keep pipelines full, especially with branches

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Power Efficiency

Q: Does multiple issue / ILP cost much?
A: Yes.
—> Dynamic issue and speculation requires power

CPU Year Clock Rate Pipeline Issue Out-of-order/ Cores Power
Stages width Speculation
1486 1989 25MHz 1 No 1
Pentium 1993 66MHz) 2 No 1
Pentium Pro 1997 200MHz 10 3 Yes 1
P4 Willamette 2001 2000MHz 22 3 Yes 1
UltraSparc Il 2003 1950MHz 14 4 No 1
P4 Prescott 2004 3600MHz 3 Yes 1

Those simpler cores did something very right.

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Why Multicore?

Moore’s law
* Alaw about transistors
* Smaller means more transistors per die
* And smaller means faster too

But: Power consumption growing too...

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Power Efficiency
Q: Does multiple issue / ILP cost much?
A: Yes.

- Dynamic issue and speculation requires power

O

Those simpler cores did something very right.

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Improving IPC via ILP TLP

Exploiting Thread-Level parallelism

Hardware multithreading to improve utilization:
Multiplexing multiple threads on single CPU
Sacrifices latency for throughput

Single thread cannot fully utilize CPU? Try more!
Three types:

e Course-grain (has preferred thread)
* Fine-grain (round robin between threads)
e Simultaneous (hyperthreading)

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

What is a thread?

Process: multiple threads, code, data and OS state
Threads: share code, data, files, not regs or stack

stack stack stack

single-threaded multithreaded

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Standard Multithreading Picture

Time evolution of issue slots

* Color=thread, white =no instruction

B

HEE

2 BN
= HHEN

4-wide

Superscalar

CGMT

Switch to
thread B on
thread A L2

NDISG E. Levent Bi

g}éaeyr n%%d'e'

1
FGMT

Switch
threads

_
SMT

Insns from
multiple
threads
coexist

arisi— BLM202

Hyperthreading

Multi-Core vs. Multi-Issue
vs. HT
Programs:

Num. Pipelines:

Pipeline Width:

Hyperthreads
* HT = Multilssue + extra PCs and registers — dependency logic
e HT = MultiCore — redundant functional units + hazard avoidance

Hyperthreads (Intel)
* |llusion of multiple cores on a single core
* Easy to keep HT pipelines full + share functional units

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Parallel Programming

Q: So lets just all use multicore from now on!
A: Software must be written as parallel program

Multicore difficulties
 Partitioning work
e Coordination & synchronization
 Communications overhead
* How do you write parallel programs?

... without knowing exact underlying architecture?

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Work Partitioning
Partition work so all cores have something to do

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Load Balancing

Load Balancing
Need to partition so all cores are actually working

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Amdahl’s Law

If tasks have a serial part and a parallel part...
Example:
step 1: divide input data into n pieces
step 2: do work on each piece
step 3: combine all results
Recall: Amdahl’s Law

As number of cores increases ...

* time to execute parallel part? Remains the same
* time to execute serial part?

» Serial part eventually dominates

goes to zero

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Parallelism is a necessity

Necessity, not luxury
Power wall

Not easy to get performance out of

Many solutions
Pipelining
Multi-issue
Hyperthreading
Multicore

Dr. V. E. Levent

Bilgisayar Mimarisi — BLM202

Parallel Programming

Q: So lets just all use multicore from now on!
A: Software must be written as parallel program

Multicore difficulties
 Partitioning work
e Coordination & synchronization
 Communications overhead
* How do you write parallel programs?

... without knowing exact underlying architecture?

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Big Picture: Parallelism and Synchronization

How do | take advantage of parallelism?
How do | write (correct) parallel programs?

What primitives do | need to implement correct parallel programs?

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Parallelism & Synchronization

Cache Coherency

* Processors cache shared data = they see different (incoherent) values for
the same memory location

Synchronizing parallel programs
e HW support for synchronization

How to write parallel programs
 Threads and processes

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Parallelism and Synchronization

Cache Coherency Problem: What happens when to two or more
processors cache shared data?

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Parallelism and Synchronization

Cache Coherency Problem: What happens when to two or more
processors cache shared data?

i.e. the view of memory held by two different processors is through
their individual caches.

As a result, processors can see different (incoherent) values to the
same memory location.

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Parallelism and Synchronization

compute
jump/branch
targets

memory =

register
file

addr

B 41
Pc _)@ in dout
T memor
% E :
detect
hazard

Instruction
Fetch Execute Memory

IF/ID Dr. V. DYE¥ent BilgisayaEX) M — BLM202 MEM/WB

Parallelism and Synchronization

Each processor core has its own L1 cache

compute
jump/branch
targets

memory

register
file

Instruction \Write-
Fetch WIRERY

IF/ID ID/EX EX/MEM MEM/WB

compute
jump/branch
targets

memory register

Instruction
Fetch

IF/ID ID/EX EX/MEM MEM/WB

Dr. V. E. Levent

compute
jump/branch
targets

memory

register
file

Instruction \Write-
Fetch Execute Memory

IF/ID ID/EX EX/MEM MEM/WB

compute
jump/branch
targets

memory register

Instruction
Fetch

IF/ID

Bilgisayar Mimarisi — BLM202

Parallelism and Synchronization

Each processor core has its own L1 cache

memory

register
file

register
file

register
file

register
file

— —

control

; contral

[Write- Instruction Instruction

Instruction Instruction 15 15
Back Fetch Execute Fetch Execute

Fetch Execute Fetch
IF/ID ID/EX EX/MEM MEM/WB IF/ID ID/EX EX/MEM MEM/WB

Execute

IF/ID ID/EX EX/MEM MEM/WB

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Parallelism and Synchronization

Each processor core has its own L1 cache

register
file

register

memaory register memory register
file file file
addr D addr D addr D addr

control des control de dow control des control des
memory £ memory memory £ memory

Instruction Instruction . [Write- Instruction - Instruction .

Fetch Execute Memory Fetch Execute Memory Back Fetch Execute Memory Fetch Execute
IF/ID ID/EX EX/MEM MEM/WB IF/ID ID/EX EX/MEM MEM/WB IF/ID ID/EX EX/MEM MEM/WB

Memory
IF/ID

ID/EX EX/MEM MEM/WB

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Shared Memory Multiprocessors

Shared Memory Multiprocessor (SMP)
e Typical (today): 2 — 4 processor dies, 2 — 8 cores each
 HW provides single physical address space for all processors

Core0 Corel Core2 Core3
Cache Cache Cache Cache
Interconnect
Memory /O

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Cache Coherency Problem

Thread A (on Core0) Thread B (on Corel)
for(inti=0,i<5;i++) { for(intj=0;j<5; j++) {
X=X+1; X=X+1;
} }
What will the value of x be after both loops finish?
Core0 Corel CoreN
Cache Cache Cache
Interconnect
Memory /0

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Not just a problem for Write-Back Caches

Executingon a Time Event CPUA’s CPU B’s Memory
write-thru cache step cache cache

0 0

1 CPU Areads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1to X 1 0 1

Core0 Corel CoreN

Cache Cache Cache

Interconnect
Memory /O

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Two Issues

Coherence
e What values can be returned by a read

 Need a globally uniform (consistent) view of a single memory location
Solution: Cache Coherence Protocols

Consistency
* When a written value will be returned by a read

 Need a globally uniform (consistent) view of all memory locations relative
to each other

Solution: Memory Consistency Models

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Coherence Defined

Informal: Reads return most recently written value

Formal: For concurrent processes P, and P,
* P writes X before P reads X (with no mtervenmg writes)
= read returns written value
* (preserve program order)

* P, writes X before P, reads X
= read returns written value
* (coherent memory view, can’t read old value forever)

* P, writes X and P, writes X
= all processors See writes in the same order

* all see the same final value for X

* Aka write serialization
* (else P, can see P,’s write before P,’s and P can see the opposite; their final understanding of

state is wrong)

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Cache Coherence Protocols

Operations performed by caches in multiprocessors to ensure
coherence

* Migration of data to local caches
e Reduces bandwidth for shared memory

* Replication of read-shared data
* Reduces contention for access

Snooping protocols
e Each cache monitors bus reads/writes

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Snooping

Snooping for Hardware Cache Coherence
* All caches monitor bus and all other caches
* Bus read: respond if you have dirty data
e Bus write: update/invalidate your copy of data

Core0 Corel CoreN
Snoop Cache Snoop Cache SYplefe]s) Cache
Interconnect

Memory /0

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

Invalidating Snooping Protocols

Cache gets exclusive access to a block when it is to be written
* Broadcasts an invalidate message on the bus

* Subsequent read in another cache misses
* Owning cache supplies updated value

Time CPU activity Bus activity CPUAs CPUB’s Memory
Step cache cache

0 0

1 CPU Areads X Cache miss for X 0 0

2 CPU B reads X Cache miss for X 0 0 0

3 CPU A writes 1 to X Invalidate for X 1 0)

4 CPU B read X Cache miss for X 1 1 1

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202

