
Computer Architecture

Fenerbahçe University

Week 14: Parallelism, Multi Core,
Synchronization

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Prof: Dr. Vecdi Emre Levent

Office: 311

Email: emre.levent@fbu.edu.tr

TA: Arş. Gör. Uğur Özbalkan

Office: 311

Email: ugur.ozbalkan@fbu.edu.tr

Professor & TAs

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Course Plan

• Parallelism

• Multi Core

• Synchronization

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Big Picture: Multicore and Parallelism

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Big Picture: Multicore and Parallelism
Why do I need four computing cores on my phone?!

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Big Picture: Multicore and Parallelism

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Big Picture: Multicore and Parallelism

Why do I need
sixteeen computing
cores on my
phone?!

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Pitfall: Amdahl’s Law

affected execution time

amount of improvement
+ execution time unaffected

Execution time after improvement =

Timproved =
T
affected

improvement factor
+ Tunaffected

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Scaling Example

Workload: sum of 10 scalars, and 10 × 10 matrix sum
• Speed up from 10 to 100 processors?

Single processor: Time = (10 + 100) × tadd

10 processors
• Speedup = 110/10× tadd

100 processors
• Speedup = 110/100 × tadd

Assumes load can be balanced across processors

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Takeaway

Unfortunately, we cannot not obtain unlimited scaling (speedup) by
adding unlimited parallel resources, eventual performance is
dominated by a component needing to be executed sequentially.

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Performance Improvement 101

2 Classic Goals of Architects:

⬇ Clock period (⬆ Clock frequency)

⬇ Cycles per Instruction (⬆ IPC)

seconds instructions cycles seconds

program program instruction cycle
= x x

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Clock frequencies have stalled

Darling of performance improvement for decades

Why is this no longer the strategy?

Hitting Limits:
• Pipeline depth

• Clock frequency

• Moore’s Law & Technology Scaling

• Power

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Improving IPC via ILP

Exploiting Intra-instruction parallelism:

• Pipelining (decode A while fetching B)

Exploiting Instruction Level Parallelism (ILP):

• Multiple issue pipeline

• Statically detected by compiler (VLIW)

• Dynamically detected by HW

Dynamically Scheduled (OoO)

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Instruction-Level Parallelism (ILP)

Pipelining: execute multiple instructions in parallel

Q: How to get more instruction level parallelism?

A: Deeper pipeline
• E.g. 250MHz 1-stage; 500Mhz 2-stage; 1GHz 4-stage; 4GHz 16-stage

Pipeline depth limited by…
• max clock speed (less work per stage shorter clock cycle)
• min unit of work
• dependencies, hazards / forwarding logic

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Instruction-Level Parallelism (ILP)

Pipelining: execute multiple instructions in parallel

Q: How to get more instruction level parallelism?

A: Multiple issue pipeline
• Start multiple instructions per clock cycle in duplicate stages

ALU/Br

LW/SW

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Static Multiple Issue

a.k.a. Very Long Instruction Word (VLIW)

Compiler groups instructions to be issued together
• Packages them into “issue slots”

How does HW detect and resolve hazards?

It doesn’t. ☺ Compiler must avoid hazards

Example: Static Dual-Issue 32-bit RISC-V
• Instructions come in pairs (64-bit aligned)

• One ALU/branch instruction (or nop)
• One load/store instruction (or nop)

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

RISC-V with Static Dual Issue

Two-issue packets
• One ALU/branch instruction

• One load/store instruction

• 64-bit aligned
• ALU/branch, then load/store

• Pad an unused instruction with nop

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Techniques and Limits of Static Scheduling

Goal: larger instruction windows (to play with)

• Predication

• Loop unrolling

• Function in-lining

• Basic block modifications (superblocks, etc.)

Roadblocks

• Memory dependences (aliasing)

• Control dependences

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Speculation

Reorder instructions

• To fill the issue slot with useful work

• Complicated: exceptions may occur

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Optimizations to make it work

Move instructions to fill in nops

Need to track hazards and dependencies

Loop unrolling

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Improving IPC via ILP

Exploiting Intra-instruction parallelism:

• Pipelining (decode A while fetching B)

Exploiting Instruction Level Parallelism (ILP):

Multiple issue pipeline (2-wide, 4-wide, etc.)

• Statically detected by compiler (VLIW)

• Dynamically detected by HW

Dynamically Scheduled (OoO)

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Dynamic Multiple Issue

aka SuperScalar Processor (c.f. Intel)
• CPU chooses multiple instructions to issue each cycle
• Compiler can help, by reordering instructions….
• … but CPU resolves hazards

Even better: Speculation/Out-of-order Execution
• Execute instructions as early as possible
• Aggressive register renaming (indirection to the rescue!)
• Guess results of branches, loads, etc.
• Roll back if guesses were wrong
• Don’t commit results until all previous insns committed

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Dynamic Multiple Issue

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Effectiveness of OoO Superscalar

It was awesome, but then it stopped improving

Limiting factors?
• Programs dependencies

• Memory dependence detection → be conservative
• e.g. Pointer Aliasing: A[0] += 1; B[0] *= 2;

• Hard to expose parallelism
• Still limited by the fetch stream of the static program

• Structural limits
• Memory delays and limited bandwidth

• Hard to keep pipelines full, especially with branches

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Power Efficiency

Q: Does multiple issue / ILP cost much?
A: Yes.
→ Dynamic issue and speculation requires power

CPU Year Clock Rate Pipeline
Stages

Issue
width

Out-of-order/
Speculation

Cores Power

i486 1989 25MHz 5 1 No 1 5W

Pentium 1993 66MHz 5 2 No 1 10W

Pentium Pro 1997 200MHz 10 3 Yes 1 29W

P4 Willamette 2001 2000MHz 22 3 Yes 1 75W

UltraSparc III 2003 1950MHz 14 4 No 1 90W

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Those simpler cores did something very right.

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Why Multicore?

Moore’s law
• A law about transistors

• Smaller means more transistors per die

• And smaller means faster too

But: Power consumption growing too…

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Power Efficiency
Q: Does multiple issue / ILP cost much?
A: Yes.
→ Dynamic issue and speculation requires power
CPU Year Clock Rate Pipeline

Stages
Issue
width

Out-of-order/
Speculation

Cores Power

i486 1989 25MHz 5 1 No 1 5W

Pentium 1993 66MHz 5 2 No 1 10W

Pentium Pro 1997 200MHz 10 3 Yes 1 29W

P4 Willamette 2001 2000MHz 22 3 Yes 1 75W

UltraSparc III 2003 1950MHz 14 4 No 1 90W

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Those simpler cores did something very right.

Core 2006 2930MHz 14 4 Yes 2 75W

Core i5 Nehal 2010 3300MHz 14 4 Yes 1 87W

Core i5 Ivy Br 2012 3400MHz 14 4 Yes 8 77W

UltraSparc T1 2005 1200MHz 6 1 No 8 70W

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Improving IPC via ILP TLP

Exploiting Thread-Level parallelism

Hardware multithreading to improve utilization:
• Multiplexing multiple threads on single CPU

• Sacrifices latency for throughput

• Single thread cannot fully utilize CPU? Try more!

• Three types:

• Course-grain (has preferred thread)

• Fine-grain (round robin between threads)

• Simultaneous (hyperthreading)

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

What is a thread?

Process: multiple threads, code, data and OS state

Threads: share code, data, files, not regs or stack

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Standard Multithreading Picture

Time evolution of issue slots
• Color = thread, white = no instruction

CGMT FGMT SMT4-wide
Superscalar

ti
m

e

Switch to
thread B on
thread A L2

miss

Switch
threads

every cycle

Insns from
multiple
threads
coexist

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Hyperthreading

Multi-Core vs. Multi-Issue
Programs:

Num. Pipelines:

Pipeline Width:

Hyperthreads
• HT = MultiIssue + extra PCs and registers – dependency logic
• HT = MultiCore – redundant functional units + hazard avoidance

Hyperthreads (Intel)
• Illusion of multiple cores on a single core
• Easy to keep HT pipelines full + share functional units

vs. HT
N 1 N

N 1 1

1 N N

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Parallel Programming

Q: So lets just all use multicore from now on!

A: Software must be written as parallel program

Multicore difficulties
• Partitioning work

• Coordination & synchronization

• Communications overhead

• How do you write parallel programs?

... without knowing exact underlying architecture?

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Work Partitioning
Partition work so all cores have something to do

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Load Balancing

Load Balancing

Need to partition so all cores are actually working

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Amdahl’s Law

If tasks have a serial part and a parallel part…

Example:

step 1: divide input data into n pieces

step 2: do work on each piece

step 3: combine all results

Recall: Amdahl’s Law

As number of cores increases …
• time to execute parallel part?
• time to execute serial part?
• Serial part eventually dominates

goes to zero

Remains the same

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Parallelism is a necessity

Necessity, not luxury
Power wall

Not easy to get performance out of

Many solutions
Pipelining
Multi-issue
Hyperthreading
Multicore

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Parallel Programming

Q: So lets just all use multicore from now on!

A: Software must be written as parallel program

Multicore difficulties
• Partitioning work

• Coordination & synchronization

• Communications overhead

• How do you write parallel programs?

... without knowing exact underlying architecture?

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Big Picture: Parallelism and Synchronization

How do I take advantage of parallelism?

How do I write (correct) parallel programs?

What primitives do I need to implement correct parallel programs?

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Parallelism & Synchronization

Cache Coherency
• Processors cache shared data → they see different (incoherent) values for

the same memory location

Synchronizing parallel programs
• HW support for synchronization

How to write parallel programs
• Threads and processes

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Parallelism and Synchronization

Cache Coherency Problem: What happens when to two or more
processors cache shared data?

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Parallelism and Synchronization

Cache Coherency Problem: What happens when to two or more
processors cache shared data?

i.e. the view of memory held by two different processors is through
their individual caches.

As a result, processors can see different (incoherent) values to the
same memory location.

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Parallelism and Synchronization

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Parallelism and Synchronization
Each processor core has its own L1 cache

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Parallelism and Synchronization

Each processor core has its own L1 cache

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Parallelism and Synchronization

Each processor core has its own L1 cache

Core0

Cache

Memory I/O

Interconnect

Core1

Cache

Core3

Cache

Core2

Cache

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Shared Memory Multiprocessors

Shared Memory Multiprocessor (SMP)
• Typical (today): 2 – 4 processor dies, 2 – 8 cores each

• HW provides single physical address space for all processors

Core0

Cache

Memory I/O

Interconnect

Core1

Cache

Core3

Cache

Core2

Cache

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Cache Coherency Problem

Thread A (on Core0) Thread B (on Core1)
for(int i = 0, i < 5; i++) { for(int j = 0; j < 5; j++) {

x = x + 1; x = x + 1;
} }

What will the value of x be after both loops finish?

Core0

Cache

Memory I/O

Interconnect

Core1

Cache
... CoreN

Cache
... ...

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Not just a problem for Write-Back Caches
Executing on a
write-thru cache

Time
step

Event CPU A’s
cache

CPU B’s
cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

Core0

Cache

Memory I/O

Interconnect

Core1

Cache
... CoreN

Cache
... ...

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Two issues

Coherence

• What values can be returned by a read

• Need a globally uniform (consistent) view of a single memory location

Solution: Cache Coherence Protocols

Consistency

• When a written value will be returned by a read

• Need a globally uniform (consistent) view of all memory locations relative
to each other

Solution: Memory Consistency Models

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Coherence Defined

Informal: Reads return most recently written value
Formal: For concurrent processes P1 and P2

• P writes X before P reads X (with no intervening writes)
 read returns written value
• (preserve program order)

• P1 writes X before P2 reads X
 read returns written value
• (coherent memory view, can’t read old value forever)

• P1 writes X and P2 writes X
 all processors see writes in the same order
• all see the same final value for X
• Aka write serialization
• (else PA can see P2’s write before P1’s and PB can see the opposite; their final understanding of

state is wrong)

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Cache Coherence Protocols

Operations performed by caches in multiprocessors to ensure
coherence

• Migration of data to local caches
• Reduces bandwidth for shared memory

• Replication of read-shared data
• Reduces contention for access

Snooping protocols
• Each cache monitors bus reads/writes

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Snooping

Snooping for Hardware Cache Coherence
• All caches monitor bus and all other caches

• Bus read: respond if you have dirty data

• Bus write: update/invalidate your copy of data

...Core0

Cache

Memory I/O

Interconnect

... ...
Snoop

Core1

CacheSnoop

CoreN

CacheSnoop

Bilgisayar Mimarisi – BLM202Dr. V. E. Levent

Invalidating Snooping Protocols

Cache gets exclusive access to a block when it is to be written
• Broadcasts an invalidate message on the bus

• Subsequent read in another cache misses
• Owning cache supplies updated value

Time

Step

CPU activity Bus activity CPU A’s

cache

CPU B’s

cache

Memory

0 0

1 CPU A reads X Cache miss for X 0 0

2 CPU B reads X Cache miss for X 0 0 0

3 CPU A writes 1 to X Invalidate for X 1 0

4 CPU B read X Cache miss for X 1 1 1

