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Course Plan

e Parallelism
e Multi Core

e Synchronization
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Big Picture: Multicore and Parallelism
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Big Picture: Multicore and Parallelism

Why do | need four computing cores on my phone?!
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Big Picture: Multicore and Parallelism

Why do | need
sixteeen computing
cores on my

phone?!
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Pitfall: Amdahl’s Law

Execution time after improvement =

affected execution time

, + execution time unaffected
amount of improvement

T — Taffected

- = +
improved improvement factor unaffected
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Scaling Example

Workload: sum of 10 scalars, and 10 X 10 matrix sum
e Speed up from 10 to 100 processors?

Single processor: Time = (10 + 100) % t_,,

10 processors
* Speedup = 110/10% t_,

100 processors
* Speedup =110/100 X t_,

Assumes load can be balanced across processors
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IELGENEY,

Unfortunately, we cannot not obtain unlimited scaling (speedup) by
adding unlimited parallel resources, eventual performance is
dominated by a component needing to be executed sequentially.
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Performance Improvement 101

L | Cycles per Instruction

cycles

instruction
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Clock frequencies have stalled

Darling of performance improvement for decades

Why is this no longer the strategy?
Hitting Limits:

* Pipeline depth

* Clock frequency

* Moore’s Law & Technology Scaling
* Power
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Improving IPC via ILP

Exploiting Intra-instruction parallelism:
. Pipelining (decode A while fetching B)

Exploiting Instruction Level Parallelism (ILP):
. Multiple issue pipeline
e Statically detected by compiler (VLIW)
e Dynamically detected by HW
Dynamically Scheduled (Oo00)
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Instruction-Level Parallelism (ILP)

Pipelining: execute multiple instructions in parallel
Q: How to get more instruction level parallelism?

A: Deeper pipeline
 E.g. 250MHz 1-stage; 500Mhz 2-stage; 1GHz 4-stage; 4GHz 16-stage

Pipeline depth limited by...
* max clock speed (less work per stage = shorter clock cycle)

* min unit of work
* dependencies, hazards / forwarding logic
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Instruction-Level Parallelism (ILP)

Pipelining: execute multiple instructions in parallel
Q: How to get more instruction level parallelism?

A: Multiple issue pipeline

» Start multiple instructions per clock cycle in duplicate stages
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Static Multiple Issue

a.k.a. Very Long Instruction Word (VLIW)

Compiler groups instructions to be issued together
e Packages them into “issue slots”

How does HW detect and resolve hazards?
It doesn’t. © Compiler must avoid hazards

Example: Static Dual-Issue 32-bit RISC-V

* Instructions come in pairs (64-bit aligned)
* One ALU/branch instruction (or nop)
* One load/store instruction (or nop)
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RISC-V with Static Dual Issue

Two-issue packets
 One ALU/branch instruction
* One load/store instruction
* 64-bit aligned
 ALU/branch, then load/store
* Pad an unused instruction with nop

n ALU/branch IF ID EX MEM WB

n+4 Load/store IF ID EX MEM WB

n+8 ALU/branch IF ID EX MEM WB

n+12 Load/store IF ID EX MEM WB

n+16 ALU/branch IF ID EX MEM WB
n+20 Load/store IF ID EX MEM WB
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Techniques and Limits of Static Scheduling

Goal: larger instruction windows (to play with)
* Predication

* Loop unrolling

* Function in-lining

e Basic block modifications (superblocks, etc.)

Roadblocks
* Memory dependences (aliasing)
 Control dependences
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Speculation
Reorder instructions

. To fill the issue slot with useful work
. Complicated: exceptions may occur
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Optimizations to make it work
Move instructions to fill in nops
Need to track hazards and dependencies

Loop unrolling
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Improving IPC via ILP

Exploiting Intra-instruction parallelism:
. Pipelining (decode A while fetching B)

Exploiting Instruction Level Parallelism (ILP):
Multiple issue pipeline (2-wide, 4-wide, etc.)
e Statically detected by compiler (VLIW)
e Dynamically detected by HW
Dynamically Scheduled (O00)
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Dynamic Multiple Issue

aka SuperScalar Processor (c.f. Intel)
* CPU chooses multiple instructions to issue each cycle
* Compiler can help, by reordering instructions....
* ... but CPU resolves hazards

Even better: Speculation/Out-of-order Execution
* Execute instructions as early as possible
» Aggressive register renaming (indirection to the rescue!)
Guess results of branches, loads, etc.
Roll back if guesses were wrong
Don’t commit results until all previous insns committed
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Dynamic Multiple Issue

Instruction fetch

. In-order issue
and decode unit

Reservation | | Reservation Reservation | | Reservation
station station station station

Floating
point

Out-of-order execute

Com_mit In-order commit
unit
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Effectiveness of OoO Superscalar

It was awesome, but then it stopped improving

Limiting factors?
* Programs dependencies
* Memory dependence detection = be conservative
e e.g. Pointer Aliasing: A[0] += 1, B[0] *= 2;
Hard to expose parallelism
* Still limited by the fetch stream of the static program

Structural limits
 Memory delays and limited bandwidth

Hard to keep pipelines full, especially with branches
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Power Efficiency

Q: Does multiple issue / ILP cost much?
A: Yes.
—> Dynamic issue and speculation requires power

CPU Year Clock Rate Pipeline Issue  Out-of-order/ Cores Power
Stages  width  Speculation
1486 1989 25MHz 1 No 1
Pentium 1993 66MHz ) 2 No 1
Pentium Pro 1997 200MHz 10 3 Yes 1
P4 Willamette 2001 2000MHz 22 3 Yes 1
UltraSparc Il 2003  1950MHz 14 4 No 1
P4 Prescott 2004 3600MHz 3 Yes 1

Those simpler cores did something very right.
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Why Multicore?

Moore’s law
* Alaw about transistors
* Smaller means more transistors per die
* And smaller means faster too

But: Power consumption growing too...
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Power Efficiency
Q: Does multiple issue / ILP cost much?
A: Yes.

- Dynamic issue and speculation requires power

O

Those simpler cores did something very right.
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Improving IPC via ILP TLP

Exploiting Thread-Level parallelism

Hardware multithreading to improve utilization:
Multiplexing multiple threads on single CPU
Sacrifices latency for throughput

Single thread cannot fully utilize CPU? Try more!
Three types:

e Course-grain (has preferred thread)
* Fine-grain (round robin between threads)
e Simultaneous (hyperthreading)
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What is a thread?

Process: multiple threads, code, data and OS state
Threads: share code, data, files, not regs or stack

stack stack stack

single-threaded multithreaded
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Standard Multithreading Picture

Time evolution of issue slots
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Hyperthreading

Multi-Core vs. Multi-Issue
vs. HT
Programs:

Num. Pipelines:

Pipeline Width:

Hyperthreads
* HT = Multilssue + extra PCs and registers — dependency logic
e HT = MultiCore — redundant functional units + hazard avoidance

Hyperthreads (Intel)
* |llusion of multiple cores on a single core
* Easy to keep HT pipelines full + share functional units
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Parallel Programming

Q: So lets just all use multicore from now on!
A: Software must be written as parallel program

Multicore difficulties
 Partitioning work
e Coordination & synchronization
 Communications overhead
* How do you write parallel programs?

... without knowing exact underlying architecture?
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Work Partitioning
Partition work so all cores have something to do
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Load Balancing

Load Balancing
Need to partition so all cores are actually working
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Amdahl’s Law

If tasks have a serial part and a parallel part...
Example:
step 1: divide input data into n pieces
step 2: do work on each piece
step 3: combine all results
Recall: Amdahl’s Law

As number of cores increases ...

* time to execute parallel part? Remains the same
* time to execute serial part?

» Serial part eventually dominates

goes to zero
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Parallelism is a necessity

Necessity, not luxury
Power wall

Not easy to get performance out of

Many solutions
Pipelining
Multi-issue
Hyperthreading
Multicore

Dr. V. E. Levent
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Parallel Programming

Q: So lets just all use multicore from now on!
A: Software must be written as parallel program

Multicore difficulties
 Partitioning work
e Coordination & synchronization
 Communications overhead
* How do you write parallel programs?

... without knowing exact underlying architecture?
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Big Picture: Parallelism and Synchronization

How do | take advantage of parallelism?
How do | write (correct) parallel programs?

What primitives do | need to implement correct parallel programs?
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Parallelism & Synchronization

Cache Coherency

* Processors cache shared data = they see different (incoherent) values for
the same memory location

Synchronizing parallel programs
e HW support for synchronization

How to write parallel programs
 Threads and processes

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202



Parallelism and Synchronization

Cache Coherency Problem: What happens when to two or more
processors cache shared data?
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Parallelism and Synchronization

Cache Coherency Problem: What happens when to two or more
processors cache shared data?

i.e. the view of memory held by two different processors is through
their individual caches.

As a result, processors can see different (incoherent) values to the
same memory location.
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Parallelism and Synchronization
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Parallelism and Synchronization

Each processor core has its own L1 cache
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Parallelism and Synchronization

Each processor core has its own L1 cache
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Parallelism and Synchronization

Each processor core has its own L1 cache
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Shared Memory Multiprocessors

Shared Memory Multiprocessor (SMP)
e Typical (today): 2 — 4 processor dies, 2 — 8 cores each
 HW provides single physical address space for all processors

Core0 Corel Core2 Core3
Cache Cache Cache Cache
Interconnect
Memory /O
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Cache Coherency Problem

Thread A (on Core0) Thread B (on Corel)
for(inti=0,i<5;i++) { for(intj=0;j<5; j++) {
X=X+1; X=X+1;
} }
What will the value of x be after both loops finish?
Core0 Corel CoreN
Cache Cache Cache
Interconnect
Memory /0
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Not just a problem for Write-Back Caches

Executingon a Time Event CPUA’s CPU B’s Memory
write-thru cache  step cache cache

0 0

1 CPU Areads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1to X 1 0 1

Core0 Corel CoreN

Cache Cache Cache

Interconnect
Memory /O
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Two Issues

Coherence
e What values can be returned by a read

 Need a globally uniform (consistent) view of a single memory location
Solution: Cache Coherence Protocols

Consistency
* When a written value will be returned by a read

 Need a globally uniform (consistent) view of all memory locations relative
to each other

Solution: Memory Consistency Models
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Coherence Defined

Informal: Reads return most recently written value

Formal: For concurrent processes P, and P,
* P writes X before P reads X (with no mtervenmg writes)
= read returns written value
* (preserve program order)

* P, writes X before P, reads X
= read returns written value
* (coherent memory view, can’t read old value forever)

* P, writes X and P, writes X
= all processors See writes in the same order

* all see the same final value for X

* Aka write serialization
* (else P, can see P,’s write before P,’s and P can see the opposite; their final understanding of

state is wrong)
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Cache Coherence Protocols

Operations performed by caches in multiprocessors to ensure
coherence

* Migration of data to local caches
e Reduces bandwidth for shared memory

* Replication of read-shared data
* Reduces contention for access

Snooping protocols
e Each cache monitors bus reads/writes
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Snooping

Snooping for Hardware Cache Coherence
* All caches monitor bus and all other caches
* Bus read: respond if you have dirty data
e Bus write: update/invalidate your copy of data

Core0 Corel CoreN
Snoop Cache Snoop Cache SYplefe]s) Cache
Interconnect

Memory /0

Dr. V. E. Levent Bilgisayar Mimarisi — BLM202



Invalidating Snooping Protocols

Cache gets exclusive access to a block when it is to be written
* Broadcasts an invalidate message on the bus

* Subsequent read in another cache misses
* Owning cache supplies updated value

Time CPU activity Bus activity CPUAs CPUB’s Memory
Step cache cache

0 0

1 CPU Areads X Cache miss for X 0 0

2 CPU B reads X Cache miss for X 0 0 0

3 CPU A writes 1 to X Invalidate for X 1 0)

4 CPU B read X Cache miss for X 1 1 1
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