
Computer Architecture

Fenerbahçe University

Week 2: Logic Gates and Arithmetic

Computer ArchitectureDr. V. E. Levent

Prof: Dr. Vecdi Emre Levent

Office: 311

Email: emre.levent@fbu.edu.tr

TA: Arş. Gör. Uğur Özbalkan

Office: 311

Email: ugur.ozbalkan@fbu.edu.tr

Professor & TAs

2/78

Computer ArchitectureDr. V. E. Levent

Course Plan

• Logic Gates and Arithmetic

3/78

Computer ArchitectureDr. V. E. Levent

Switch

Conductor and insulator

4/78

Computer ArchitectureDr. V. E. Levent

Switches to Gates

+

-

A

B

Truth Table

A B Light

OFF OFF OFF

OFF ON ON

ON OFF ON

ON ON ON

5/78

Computer ArchitectureDr. V. E. Levent

Switches to Gates

A B Light

OFF OFF OFF

OFF ON OFF

ON OFF OFF

ON ON ON

+

- -

A

B

A

B

A B Light

OFF OFF OFF

OFF ON ON

ON OFF ON

ON ON ON

Truth Table

+

Truth Table

6/78

Computer ArchitectureDr. V. E. Levent

• OR

• AND

Switches to Gates

A B Light

OFF OFF

A B Light

OFF OFF

OFF ON

A B Light

OFF OFF

OFF ON

ON OFF

ON ON

A B Light

+

-

-

A

B

A

B

A B Light

OFF OFF OFF

OFF ON ON

ON OFF ON

ON ON ON

Truth Table

+ A B Light

OFF OFF OFF

OFF ON OFF

ON OFF OFF

ON ON ON

7/78

Computer ArchitectureDr. V. E. Levent

• OR

• AND

Switches to Gates

A B Light

OFF OFF

A B Light

OFF OFF

OFF ON

A B Light

OFF OFF

OFF ON

ON OFF

ON ON

A B Light
-

-

A B Light

OFF OFF OFF

OFF ON ON

ON OFF ON

ON ON ON

Truth Table

A B Light

OFF OFF OFF

OFF ON OFF

ON OFF OFF

ON ON ON

A

B

A

B

OR

AND

8/78

Computer ArchitectureDr. V. E. Levent

Switches to Gates

• Binary
• There are two symbols: true and false

• Fundamental for logic design

9/78

Computer ArchitectureDr. V. E. Levent

Logic Gates

• NOT:

• AND:

• OR:
A B Out

0 0 0

0 1 1

1 0 1

1 1 1

A B Out

0 0 0

0 1 0

1 0 0

1 1 1

A Out

0 1

1 0

A

B

A

B

A

Logic Gates

They are using for building logic

functions

Commonly using gates:

AND, OR, NOT

10/78

Computer ArchitectureDr. V. E. Levent

Logic Gates

NOT:

AND:

A B Out

0 0 0

0 1 0

1 0 0

1 1 1

A Out

0 1

1 0

A

B

A

A B Out

0 0 0

0 1 1

1 0 1

1 1 1

A

B

A B Out

0 0 0

0 1 1

1 0 1

1 1 0

A

B

OR:

XOR:

11/78

Computer ArchitectureDr. V. E. Levent

Logic Gates

NOT:

AND:

OR:

XOR:

A B Out

0 0 0

0 1 1

1 0 1

1 1 1

A B Out

0 0 0

0 1 0

1 0 0

1 1 1

A Out

0 1

1 0

A

B

A

B

A

A B Out

0 0 0

0 1 1

1 0 1

1 1 0

A

B

A B Out

0 0 1

0 1 0

1 0 0

1 1 0

A B Out

0 0 1

0 1 1

1 0 1

1 1 0

A

B

A

B

NAND:

NOR:

A B Out

0 0 1

0 1 0

1 0 0

1 1 1

A

B
XNOR:

12/78

Computer ArchitectureDr. V. E. Levent

Logic Gates

a b c out

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

13/78

Computer ArchitectureDr. V. E. Levent

Truth Table to Function

a b c out

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

1. Write minterms
2. Write sum of products of

elements which minterm
column is 1

minterm

a b c

a b c

a b c

a b c

a b c

a b c

a b c

a b c

14/78

Computer ArchitectureDr. V. E. Levent

Truth Table to Function

a b c out

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

1. Write minterms
2. Write sum of products of

elements which minterm
column is 1
• So, out = abc + തabc + aതbc

minterm

a b c

a b c

a b c

a b c

a b c

a b c

a b c

a b c

15/78

Computer ArchitectureDr. V. E. Levent

Logical Expressions

• NOT:
▪ out = ā = !a = a

• AND:
▪ out = a ∙ b = a & b = a  b

• OR:
▪ out = a + b = a | b = a  b

• XOR:
▪ out = a  b = aതb + āb

NAND:
• out = a ∙ b = !(a & b) =  (a  b)

NOR:
• out = a + b = !(a | b) =  (a  b)

XNOR:
• out = a b = ab + ab

16/78

Computer ArchitectureDr. V. E. Levent

Logical Expressions

a + 0 =
a + 1 =
a + ā =

a ∙ 0 =
a ∙ 1 =
a ∙ ā =

a
1
1

0
a
0

17/78

Computer ArchitectureDr. V. E. Levent

Logical Expressions

(a + b) =

(a ∙ b) =

a + a b =

a(b+c) =

a(b + c) =

തa ∙ തb

തa + തb

a

ab + ac

തa + തb∙തc

A

B

A

B
↔

A

B

A

B
↔

18/78

Computer ArchitectureDr. V. E. Levent

Minimization Example

(a+b)a + (a+b)c

= aa + ba + ac + bc

= a + a(b+c) + bc

= a + bc

Minimize the function below

(a+b)(a+c) =

a + 0 = a
a + 1 = 1
a + ā = 1
a · 0 = 0
a · 1 = a
a · ā = 0

a + a b = a
a (b+c) = ab + ac

19/78

Computer ArchitectureDr. V. E. Levent

Minimization Example

(a+b)a + (a+b)c

= aa + ba + ac + bc

= a + a(b+c) + bc

= a + bc

Required logic gates

Before After

2 OR, 1 AND 1 OR, 1 AND

Minimize the function below

(a+b)(a+c) =

a + 0 = a
a + 1 = 1
a + ā = 1
a · 0 = 0
a · 1 = a
a · ā = 0

a + a b = a
a (b+c) = ab + ac

20/78

Computer ArchitectureDr. V. E. Levent

Equality Check with Truth tables
Example: (a+b)(a+c) = a + bc

a b c

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

21/78

Computer ArchitectureDr. V. E. Levent

a+b a+c Sol

0 0 0

0 1 0

1 0 0

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

bc Sağ

0 0

0 0

0 0

1 1

0 1

0 1

0 1

1 1

a b c

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Equality Check with Truth tables
Example: (a+b)(a+c) = a + bc

22/78

Computer ArchitectureDr. V. E. Levent

Karnaugh Maps

How to reach most optimum circuit?

–Algebraic minimizations

–Karnaugh Map

–Computer aided minimization softwares (Totally
that way in 2021)

23/78

Computer ArchitectureDr. V. E. Levent

Karnaugh Maps

a b c out

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Sum of Minterms
◼ out = abc + തabc + abc + aതbc

24/78

Computer ArchitectureDr. V. E. Levent

Karnaugh Maps

a b c out

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Sum of Minterms
◼ out = abc + തabc + abc + aതbc

Kmaps are usefull for detecting
which inputs are relevant for output

When creating Kmap table, only 1
bit can change on row and columns0 0 0 1

1 1 0 1

00 01 11 10

0

1

c
ab

25/78

Computer ArchitectureDr. V. E. Levent

Karnaugh Maps

a b c out

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Sum of Minterms
◼ out = abc + തabc + abc + aതbc

Kmap minimization
◼ Group ones with twos power group

◼ Eliminate unnecessary inputs

out = aതb + തac

0 0 0 1

1 1 0 1

00 01 11 10

0

1

c
ab

26/78

Computer ArchitectureDr. V. E. Levent

Karnaugh Maps

Minterms can be used different
groups
◼ out = bതc + aതc + ab

Minters can be group by twos power
◼ out = തc + ab

0 1 1 1

0 0 1 0

00 01 11 10

0

1

c
ab

1 1 1 1

0 0 1 0

00 01 11 10

0

1

c
ab

27/78

Computer ArchitectureDr. V. E. Levent

Karnaugh Maps

▪ out = തbd

▪ out = തb തd1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

00 01 11 10

00

01

ab

cd

11

10

0 0 0 0

1 0 0 1

1 0 0 1

0 0 0 0

00 01 11 10

00

01

ab

cd

11

10

28/78

Computer ArchitectureDr. V. E. Levent

Karnaugh Maps

• X (“Don’t care”) can be
evaluated zero or one.
▪ If all X’s are 1,

▪ out = d

▪ If all X’s are 0,

▪ And only right top X is 1, then

▪ out = തb തd

1 0 0 x

0 x x 0

0 x x 0

1 0 0 1

00 01 11 10

00

01

ab

cd

11

10

0 0 0 0

1 x x x

1 x x 1

0 0 0 0

00 01 11 10

00

01

ab

cd

11

10

29/78

Computer ArchitectureDr. V. E. Levent

Karnaugh Maps

0 0 0 1

1 1 0 1
= aതb + തac

00 01 11 10

0

1

c
ab

30/78

Computer ArchitectureDr. V. E. Levent

Multiplexer

• Multiplexer kendisine verilen
girişleri seçerek dışarı çıkarır
▪ Eğer d=0, out = a

▪ Eğer d= 1, out = b

a
b

d

a b d out

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

31/78

Computer ArchitectureDr. V. E. Levent

Multiplexer

a b d out

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

• Doğruluk tablosu oluşturun
out = തabd + abd + abതd + abd

a
b

d

32/78

Computer ArchitectureDr. V. E. Levent

Multiplexer

a b d out

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

• KMap

00 01 11 10

0

1

d
ab

a
b

d

33/78

Computer ArchitectureDr. V. E. Levent

Multiplexer

a b d out

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

• KMap

0 0 1 1

0 1 1 0

00 01 11 10

0

1

d
ab

a
b

d

34/78

Computer ArchitectureDr. V. E. Levent

Multiplexer

a b d out

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

• Minimized Equation

• out = aതd + bd

0 0 1 1

0 1 1 0

00 01 11 10

0

1

d
ab

d

b

a

a
b

d

35/78

Computer ArchitectureDr. V. E. Levent

Transistors

N-type

Closed

Insulator

P-type P-type

Gate DrainSource

++++++
+++

++

----- ------ --

- --

-

-
-

-

-
-

- -

-

--

+++

N-type

Open

Insulator

P-type P-type

Gate DrainSource

++++++++

----- ------ --

- --

-

-
-

-

-
-

- -

-

--

+ +
P-type channel created

+ ++ ++

—

P-TransistorP-Transistor

36/78

Computer ArchitectureDr. V. E. Levent

CMOS Notation

N-Type

P-Type

Electric flow controls with gate input.

gate

Closed

0

Open

1

Closed

1

Open

0
gate

37/78

Computer ArchitectureDr. V. E. Levent

NOT Gate

In Out

0 1

1 0

NOT

Truth Table

in out

in out

Vsupply

gnd

38/78

Computer ArchitectureDr. V. E. Levent

NOR Gate

A B out

0 0 1

0 1 0

1 0 0

1 1 0

NOR

b

a
out

A

out

Vsupply

B

BA

Truth Table

39/78

Computer ArchitectureDr. V. E. Levent

Logic Gates

• NOT:

• AND:

• OR:

• Generally ASIC designs builds combinations of NAND
gates

b

a

b

a

a

40/78

Computer ArchitectureDr. V. E. Levent

Number Representations

Binary
• There are two symbols: true and false; 1 and 0

• It is fundamental of digital systems

41/78

Computer ArchitectureDr. V. E. Levent

Number Representations

Binary
• There are two symbols: true and false; 1 and 0

• It is fundamental of digital systems

Base 10 Representation
• Example. 6 3 7

• Other Bases
• Base 2 — Binary

• Base 8 — Octal

• Base 16 — Hexadecimal

102 101 100

6∙102 + 3∙101 + 7∙100 = 637

1∙29+1∙26+1∙25+1∙24+1∙23+1∙22+1∙20 = 637

1∙83 + 1∙82 + 7∙81 + 5∙80 = 637

2∙162 + 7∙161 + d∙160 = 637

2∙162 + 7∙161 + 13∙160 = 637

42/78

Computer ArchitectureDr. V. E. Levent

Number Representations

Conversion between bases

Base conversion via repetitive division
• Divide by base, write remainder, move left with quotient
• Example: Base 10 to 8 (octal)

• 637  8 = 79 remainder 5
• 79  8 = 9 remainder 7
• 9  8 = 1 remainder 1
• 1  8 = 0 remainder 1

• 637 = 0o 1175

lsb (least significant bit)

msb (most significant bit)

lsb

msb

43/78

Computer ArchitectureDr. V. E. Levent

Number Representations

Convert a base 10 number to a base 2 number
Base conversion via repetitive division

• Divide by base, write remainder, move left with quotient
• 637  2 = 318 remainder 1
• 318  2 = 159 remainder 0
• 159  2 = 79 remainder 1
• 79  2 = 39 remainder 1
• 39  2 = 19 remainder 1
• 19  2 = 9 remainder 1
• 9  2 = 4 remainder 1
• 4  2 = 2 remainder 0
• 2  2 = 1 remainder 0
• 1  2 = 0 remainder 1

637 = 10 0111 1101 (can also be written as 0b10 0111 1101)

lsbmsb

44/78

Computer ArchitectureDr. V. E. Levent

Number Representations

Convert a base 10 number to a base 16 number
Base conversion via repetitive division

• Divide by base, write remainder, move left with quotient
• 657  16 = 41 remainder 1
• 41  16 = 2 remainder 9
• 2  16 = 0 remainder 2

Thus, 657 = 0x291

lsb

msb

45/78

Computer ArchitectureDr. V. E. Levent

Number Representations

Convert a base 10 number to a base 16 number
Base conversion via repetitive division

• Divide by base, write remainder, move left with quotient
• 637  16 = 39 remainder 13
• 39  16 = 2 remainder 7
• 2  16 = 0 remainder 2

637 = 0x 2 7 13 = ?
Thus, 637 = 0x27d

dec = hex
10 = 0xa
11 = 0xb
12 = 0xc
13 = 0xd
14 = 0xe
15 = 0xf

= bin
= 1010
= 1011
= 1100
= 1101
= 1110
= 1111

lsb

msb

46/78

Computer ArchitectureDr. V. E. Levent

Number Representations Summary
• Base 10 – Decimal

• Base 2 — Binary

• Base 8 — Octal

• Base 16 — Hexadecimal

102 101 100

1 0 0 1 1 1 1 1 0 1
29 28 27 26 25 24 23 22 21 20

0x 2 7 d
162161160

0o 1 1 7 5
83 82 81 80

6 3 7 6∙102 + 3∙101 + 7∙100 = 637

1∙29+1∙26+1∙25+1∙24+1∙23+1∙22+1∙
20 = 637

1∙83 + 1∙82 + 7∙81 + 5∙80 = 637

2∙162 + 7∙161 + d∙160 = 637

2∙162 + 7∙161 + 13∙160 = 637
47/78

Computer ArchitectureDr. V. E. Levent

Binary Addition

• Addition works the same
way regardless of base
• Add the digits in each

position

• Propagate the carry

Unsigned binary addition is
pretty easy

• Combine two bits at a time

• Along with a carry

183
+ 254

001110

+ 011100

How do we do arithmetic in binary?
1

Carry-outCarry-in

111 000

111

437

48/78

Computer ArchitectureDr. V. E. Levent

Binary Addition

• Binary addition requires
• Add of two bits PLUS carry-in

• Also, carry-out if necessary

49/78

Computer ArchitectureDr. V. E. Levent

1-bit Adder

Half Adder
• Adds two 1-bit numbers

• Computes 1-bit result and 1-bit carry

• No carry-in

What is the equation for Cout?
a) A + B
b) AB
c) A  B
d) A + !B
e) !A!B

A B Cout S

0 0

0 1

1 0

1 1

A B

S

Cout

50/78

Computer ArchitectureDr. V. E. Levent

1-bit Adder

Half Adder
• Adds two 1-bit numbers

• Computes 1-bit result and 1-bit carry

• No carry-in

• S = ഥAB + AഥB

• Cout = AB

A B Cout S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

A B

S

Cout

Cout

S

A B

51/78

Computer ArchitectureDr. V. E. Levent

1-bit Adder

Half Adder
• Adds two 1-bit numbers

• Computes 1-bit result and 1-bit carry

• No carry-in

• S = ഥAB + AഥB = A  B

• Cout = AB

A B Cout S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

A B

S

Cout

Cout

S

A B

52/78

Computer ArchitectureDr. V. E. Levent

1-bit Adder with Carry

Full Adder
• Adds three 1-bit numbers

• Computes 1-bit result and 1-bit carry

A B

S

Cout Cin

A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Cout

S

A B

Cin
• Can be

cascaded

S = ABC + ഥABതC + ABC + ABC

Cout = ഥABC + AഥBC + ABതC + ABC

53/78

Computer ArchitectureDr. V. E. Levent

1-bit Adder with Carry

Full Adder
• Adds three 1-bit numbers

• Computes 1-bit result and 1-bit carry

A B

S

Cout Cin

A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Cout

S

A B

Cin
• Can be

cascaded

S = ABC + ഥABതC + ABC + ABC

Cout = ഥABC + AഥBC + ABതC + ABC

Cout = AB + AC + BC

0 1 0 1

1 0 1 0

00 01 11 10
AB

Cin

0
1

S

0 0 1 0

0 1 1 1

00 01 11 10
AB

Cin

0
1

Cout

54/78

Computer ArchitectureDr. V. E. Levent

4-bit Adder

4-Bit Full Adder
• Adds two 4-bit numbers and carry in

• Computes 4-bit result and carry out

• Can be cascaded
A[4] B[4]

S[4]

Cout Cin

55/78

Computer ArchitectureDr. V. E. Levent

4-bit Adder

• Adds two 4-bit numbers, along with carry-in

• Computes 4-bit result and carry out

• Carry-out = overflow indicates result does not fit in 4 bits

56/78

Computer ArchitectureDr. V. E. Levent

4-bit Adder

• Adds two 4-bit numbers, along with carry-in

• Computes 4-bit result and carry out

• Carry-out = overflow indicates result does not fit in 4
bits

57/78

Computer ArchitectureDr. V. E. Levent

1st Attempt: Sign/Magnitude Representation

• First Attempt: Sign/Magnitude Representation

0111 = 7
1111 = -7

• 1 bit for sign (0=positive, 1=negative)
• N-1 bits for magnitude

Problem?
• Two zero’s: +0 different than -0
• Complicated circuits
• -2 + 1 = ???

0000 = +0
1000 = -0

58/78

Computer ArchitectureDr. V. E. Levent

Second Attempt: One’s complement

• Second Attempt: One’s complement
• Leading 0’s for positive and 1’s for negative

• Negative numbers: complement the positive number

• Problem?
• Two zero’s still: +0 different than -0

• -1 if offset from two’s complement

• Complicated circuits
• Carry is difficult

PDP 1

0111 = 7
1000 = -7

0000 = +0
1111 = -0

59/78

Computer ArchitectureDr. V. E. Levent

Two’s Complement Representation

What is used: Two’s Complement Representation

Nonnegative numbers are represented as usual
• 0 = 0000, 1 = 0001, 3 = 0011, 7 = 0111

Leading 1’s for negative numbers

To negate any number:
• complement all the bits (i.e. flip all the bits)
• then add 1
• -1: 1  0001  1110  1111
• -3: 3  0011  1100  1101
• -7: 7  0111  1000  1001
• -8: 8  1000  0111  1000
• -0: 0  0000  1111  0000 (this is good, -0 = +0)

60/78

Computer ArchitectureDr. V. E. Levent

Two’s Complement

Non-negatives
(as usual):

+0 = 0000
+1 = 0001
+2 = 0010
+3 = 0011
+4 = 0100
+5 = 0101
+6 = 0110
+7 = 0111
+8 = 1000

Negatives (two’s complement)
flip then add 1
ത0 = 1111 -0 = 0000
ത1 = 1110 -1 = 1111
ത2 = 1101 -2 = 1110
ത3 = 1100 -3 = 1101
ത4 = 1011 -4 = 1100
ത5 = 1010 -5 = 1011
ത6 = 1001 -6 = 1010
ത7 = 1000 -7 = 1001
ത8 = 0111 -8 = 1000

61/78

Computer ArchitectureDr. V. E. Levent

Two’s Complement vs. Unsigned
-1 = 1111 = 15

-2 = 1110 = 14

-3 = 1101 = 13

-4 = 1100 = 12

-5 = 1011 = 11

-6 = 1010 = 10

-7 = 1001 = 9

-8 = 1000 = 8
+7 = 0111 = 7
+6 = 0110 = 6
+5 = 0101 = 5
+4 = 0100 = 4
+3 = 0011 = 3
+2 = 0010 = 2
+1 = 0001 = 1
0 = 0000 = 0

4 bit
Unsigned

Binary
0 … 15

4 bit
Two’s

Complement
-8 … 7

62/78

Computer ArchitectureDr. V. E. Levent

2s Complement

Calculate the following twos complement number value in decimal
base

11010
11010

00101
______+1

-6 = 00110

(flip)

63/78

Computer ArchitectureDr. V. E. Levent

Two’s Complement Facts

Signed two’s complement
Negative numbers have leading 1’s

zero is unique: +0 = - 0

wraps from largest positive to largest negative

N bits can be used to represent
unsigned: range 0…2N-1

eg: 8 bits  0…255

signed (two’s complement): -(2N-1)…(2N-1 - 1)
E.g.: 8 bits  (1000 000) … (0111 1111)

-128 … 127

64/78

Computer ArchitectureDr. V. E. Levent

Sign Extension & Truncation

Extending to larger size
• 1111 = -1

• 1111 1111 = -1

• 0111 = 7

• 0000 0111 = 7

Truncate to smaller size
• 0000 1111 = 15

• BUT, 0000 1111 = 1111 = -1

65/78

Computer ArchitectureDr. V. E. Levent

Two’s Complement Addition

• Addition with two’s complement signed numbers
• Addition as usual. Ignore the sign. It just works!
• Examples
• 1 + -1 = 0001 + 1111 = 0000 (0)
• -3 + -1 = 1101 + 1111 = 1100 (-4)
• -7 + 3 = 1001 + 0011 = 1100 (-4)
• 7 + (-3) = 0111 + 1101 = 0100 (4)

Clicker Question
Which of the following has problems?

a) 7 + 1 = 1000 overflow

b) -7 + -3 = 1 0110 overflow

c) -7 + -1 = 1000 fine

d) Only (a) and (b) have problems

e) They all have problems

-1 = 1111 = 15

-2 = 1110 = 14

-3 = 1101 = 13

-4 = 1100 = 12

-5 = 1011 = 11

-6 = 1010 = 10

-7 = 1001 = 9

-8 = 1000 = 8
+7 = 0111 = 7
+6 = 0110 = 6
+5 = 0101 = 5
+4 = 0100 = 4
+3 = 0011 = 3
+2 = 0010 = 2
+1 = 0001 = 1
0 = 0000 = 0

66/78

Computer ArchitectureDr. V. E. Levent

Overflow

When can overflow occur?
• adding a negative and a positive?

• Overflow cannot occur (Why?)
• Always subtract larger magnitude from smaller

• adding two positives?
• Overflow can occur (Why?)
• Precision: Add two positives, and get a negative number!

• adding two negatives?
• Overflow can occur (Why?)
• Precision: add two negatives, get a positive number!

Rule of thumb:
• Overflow happens iff

carry into msb != carry out of msb

67/78

Computer ArchitectureDr. V. E. Levent

Overflow

When can overflow occur?
• adding a negative and a positive?

• Overflow cannot occur (Why?)

• Always subtract larger magnitude from smaller

• adding two positives?
• Overflow can occur (Why?)

• Precision: Add two positives, and get a negative number!

• adding two negatives?
• Overflow can occur (Why?)

• Precision: add two negatives, get a positive number!

Rule of thumb:
• Overflow happens iff

carry into msb != carry out of msb

A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Wrong
Sign

Wrong
Sign

SMSB

AMSB BMSB

Cout_MSB Cin_MSB

over

flow

68/78

Computer ArchitectureDr. V. E. Levent

Youtube Overflow

69/78

Computer ArchitectureDr. V. E. Levent

Binary Subtraction

Why create a new circuit?

Just use addition using two’s complement math
How?

70/78

Computer ArchitectureDr. V. E. Levent

Binary Subtraction

• Two’s Complement Subtraction
• Subtraction is simply addition,

where one of the operands has been negated
• Negation is done by inverting all bits and adding one

A – B = A + (-B) = A + (ഥB + 1)

71/78

Computer ArchitectureDr. V. E. Levent

Binary Subtraction

• Two’s Complement Subtraction
• Subtraction is simply addition,

where one of the operands has been negated
• Negation is done by inverting all bits and adding one

A – B = A + (-B) = A + (ഥB + 1)

72/78

Computer ArchitectureDr. V. E. Levent

Two’s Complement Adder

Two’s Complement Adder with overflow detection

73/78

Computer ArchitectureDr. V. E. Levent

Two’s Complement Adder

Two’s Complement Adder with overflow detection

74/78

Computer ArchitectureDr. V. E. Levent

Two’s Complement Adder

Two’s Complement Adder with overflow detection

75/78

Computer ArchitectureDr. V. E. Levent

Two’s Complement Adder

Two’s Complement Adder with overflow detection

76/78

Computer ArchitectureDr. V. E. Levent

Two’s Complement Adder

Two’s Complement Adder with overflow detection

77/78

Computer ArchitectureDr. V. E. Levent

Two’s Complement Adder

Two’s Complement Adder with overflow detection

Before: 2 inverters, 2 AND gates, 1 OR gate After: 1 XOR gate
78/78

