
Computer Architecture

Fenerbahçe University

Week 4: System Verilog Tutorial I

Computer ArchitectureDr. V. E. Levent

Prof: Dr. Vecdi Emre Levent

Office: 311

Email: emre.levent@fbu.edu.tr

TA: Arş. Gör. Uğur Özbalkan

Office: 311

Email: ugur.ozbalkan@fbu.edu.tr

Professor & TAs

2/33

Computer ArchitectureDr. V. E. Levent

Course Plan

• System Verilog for Synthesis I

3/33

Computer ArchitectureDr. V. E. Levent

System Verilog

System Verilog

• Developed over Verilog Language
• Lots of new features

4/33

Computer ArchitectureDr. V. E. Levent

System Verilog

System Verilog

• Most of the additional features are for verification
• Some features can also be used for synthesis

• As of March 2021, the number of job positions containing
System Verilog keyword on Linkedin is approximately
4000.

5/33

Computer ArchitectureDr. V. E. Levent

System Verilog

System Verilog

• IEEE Standard, IEEE 1800

• First release; 2002

6/33

Computer ArchitectureDr. V. E. Levent

System Verilog

System Verilog

• In this course, the synthesis features of System Verilog will
be covered.

7/33

Computer ArchitectureDr. V. E. Levent

System Verilog

Logic Data Type

• In Verilog Language we use;

• Reg
• Wire

Data types

8/33

Computer ArchitectureDr. V. E. Levent

System Verilog

Logic Data Type

• Reg data type are using at always blocks
• Wire data type are using at assign blocks

9/33

Computer ArchitectureDr. V. E. Levent

System Verilog

Logic Data Type

• Reg data type means Register, however it doesnt mean a
register always

• For ex.
• always@(*) block, synthesizer will synthesize combinational

logic, so it will be wire

10/33

Computer ArchitectureDr. V. E. Levent

System Verilog

Logic Data Type

• To overcome this complexity, a new data type called
"logic" has been created.

• Whether a logic data type variable will be a wire or a
register is decided by the synthesizer at the end of the
synthesis process.

11/33

Computer ArchitectureDr. V. E. Levent

System Verilog

Logic Data Type

`timescale 1ns / 1ps

module top

(input logic[1:0] a, b,

output logic eq

);

always @(*) begin

if (a[0]==b[0] && a[1]==b[1])

eq = 1;

else

eq = 0;

end

endmodule

Logic Data Type
Combinational Circuit

Example

12/33

Computer ArchitectureDr. V. E. Levent

System Verilog

Logic Data Type

Synthesized Logic

13/33

Computer ArchitectureDr. V. E. Levent

System Verilog

Logic Data Type

Logic Data Type Sequential
Circuit Example

`timescale 1ns / 1ps

module top

(

input logic clk,

input logic[1:0] a, b,

output logic eqReg

);

logic eq;

always @(*) begin

eq = eqReg;

if (a[0]==b[0] && a[1]==b[1])

eq = 1;

else

eq = 0;

end

always@(posedge clk) begin

eqReg <= eq;

end

endmodule

14/33

Computer ArchitectureDr. V. E. Levent

System Verilog

Logic Data Type

Synthesized Logic

15/33

Computer ArchitectureDr. V. E. Levent

System Verilog

Always Blocks

• In Verilog language, logic designed in always blocks can be
combinational or sequential circuit as a result of the
synthesis.

• Before synthesizing, it is not known whether the logic in
always blocks will be sequential or combinational circuitry.

16/33

Computer ArchitectureDr. V. E. Levent

System Verilog

Always Blocks

• Also, the synthesis tool takes time to make this inference
(Combinational or Sequential Circuit).

17/33

Computer ArchitectureDr. V. E. Levent

System Verilog

Always Blocks

• When designing a combinational circuit in structures such
as state machines, if the output of the combinational
circuit is forgotten to be encoded in all cases, a latch will
occur.

• Systemverilog language has 3 different always blocks to
eliminate such problems.

18/33

Computer ArchitectureDr. V. E. Levent

System Verilog

Always Blocks

New blocks:

• always_comb
• always_latch
• always_ff

19/33

Computer ArchitectureDr. V. E. Levent

System Verilog

always_comb block:

• Combinational circuits are designed in the always comb
block.

• There is no need to write a sensitivity list.

20/33

Computer ArchitectureDr. V. E. Levent

System Verilog

always_comb:

module always_comb_test

(

input logic a, b,

output logic y, z

);

always_comb begin

if (a > b) begin

y = 1;

z = 0;

end

else if (a < b) begin

y = 0;

z = 1;

end

else begin

y = 1;

z = 1;

end

end

endmodule

21/33

Computer ArchitectureDr. V. E. Levent

System Verilog

always_comb:

Synthesized Logic

22/33

Computer ArchitectureDr. V. E. Levent

System Verilog

always_comb block:

• If latch occurs in the design, the synthesizer will warn during
synthesis.

23/33

Computer ArchitectureDr. V. E. Levent

System Verilog

always_comb block:

Latch example
at always comb block

module top

(

input logic a, b,

output logic y, z

);

always_comb begin

if (a > b) begin

y = 1;

z = 0;

end

else if (a < b) begin

z = 1;

end

end

endmodule

24/33

Computer ArchitectureDr. V. E. Levent

System Verilog

always_comb:

Synthesized Logic

25/33

Computer ArchitectureDr. V. E. Levent

System Verilog

always_comb block:

• During synthesizing the design, synthesis tool output a latch
warning.

26/33

Computer ArchitectureDr. V. E. Levent

System Verilog

always_lat ch block:

• The always_latch block can be used in designs that require
the use of latch.

• Synthesis tool wont warn latch when the design contains
latch.

27/33

Computer ArchitectureDr. V. E. Levent

System Verilog

always_lat ch block:

Latch example

module top

(

input logic a, b,

output logic y, z

);

always_latch begin

if (a > b) begin

y = 1;

z = 0;

end

else if (a < b) begin

z = 1;

end

end

endmodule

28/33

Computer ArchitectureDr. V. E. Levent

System Verilog

always_lat ch block:

29/33

Computer ArchitectureDr. V. E. Levent

System Verilog

always_lat ch block:

• When the design is synthesized, it will not give any warning /
error (Vivado outputs latch warning, not in Menthor Graphics
Precision RTL synthesis tool).

• Likewise, when a design that does not contain a latch is placed
in a latch block, synthesis tool will output a warning.

30/33

Computer ArchitectureDr. V. E. Levent

System Verilog

always_ff block:

• This block is used only to make sequential circuit definitions.

• The Sensitivity list is used.

31/33

Computer ArchitectureDr. V. E. Levent

System Verilog

always_ff block:

Flip-flop example

module top

(

input logic clk, reset,

output logic y, z

);

always_ff @(posedge clk, posedge reset) begin

if (reset) begin

y <= 0;

z <= 0;

end

else begin

y <= 1;

z <= 1;

end

end

endmodule

32/33

Computer ArchitectureDr. V. E. Levent

System Verilog

always_ff block:

33/33

