Computer Architecture

Week 4: System Verilog Tutorial |

Fenerbahce University

Professor & TAs

Prof: Dr. Vecdi Emre Levent
Office: 311
Email: emre.levent@fbu.edu.tr

TA: Ars. Gor. Ugur Ozbalkan
Office: 311

Email: ugur.ozbalkan@fbu.edu.tr

2/33 Dr. V. E. Levent Computer Architecture

Course Plan

e System Verilog for Synthesis |

3/33 Dr. V. E. Levent Computer Architecture

System Verilog

System Verilog

* Developed over Verilog Language
* Lots of new features

Systemverilog
_’//

4/33 Dr. V. E. Levent Computer Architecture

System Verilog

System Verilog

* Most of the additional features are for verification
* Some features can also be used for synthesis

* As of March 2021, the number of job positions containing
System Verilog keyword on Linkedin is approximately
4000.

5/33 Dr. V. E. Levent Computer Architecture

System Verilog

System Verilog

* |EEE Standard, IEEE 1800

* First release; 2002

6/33 Dr. V. E. Levent Computer Architecture

System Verilog

System Verilog

* In this course, the synthesis features of System Verilog will
be covered.

VJEE Dr. V. E. Levent Computer Architecture

System Verilog

Logic Data Type

* |InVerilog Language we use;

* Reg
* Wire

Data types

8/33 Dr. V. E. Levent Computer Architecture

System Verilog

Logic Data Type

* Reg data type are using at always blocks
* Wire data type are using at assign blocks

9/33 Dr. V. E. Levent Computer Architecture

System Verilog

Logic Data Type
* Reg data type means Register, however it doesnt mean a
register always

* For ex.
* always@(*) block, synthesizer will synthesize combinational
logic, so it will be wire

10/33 Dr. V. E. Levent Computer Architecture

System Verilog

Logic Data Type

* To overcome this complexity, a new data type called
"logic" has been created.

* Whether a logic data type variable will be a wire or a

register is decided by the synthesizer at the end of the
synthesis process.

11/33 Dr. V. E. Levent Computer Architecture

System Verilog
Logic Data Type

"timescale

module top
(input logic][!l:
output logic eg

1 a, b,
) ;

always @(*) begin

if (a[0]==b[0] && al[l]l==b[1])
eq = ’
else

eq
end

endmodule

12/33

Dr. V. E. Levent

Logic Data Type
Combinational Circuit
Example

Computer Architecture

System Verilog

Logic Data Type

Synthesized Logic

13/33 Dr. V. E. Levent Computer Architecture

System Verilog
Logic Data Type

“timescale always@ (posedge clk) begin
egReg <= eqg;

module top
(

end
input logic clk,
input logic]|[l: a, b,
P J .[] endmodule
output logic egReg

) ;
logic eqg;

always @(*) begin
eq = eqgReg;
if (a[0]l==b[0U] && al[l]l==b[!])

eq = 1; Logic Data Type Sequential
Circuit Example

else
eq

14/33 Dr. V. E. Levent Computer Architecture

System Verilog
Logic Data Type

egReg1_i

N O

M
RTL_EQ

egRegl1 i 0O
L] _I:I 9

L
|11 = I]Di
TRTL EQ

Synthesized Logic

15/33 Dr. V. E. Levent Computer Architecture

System Verilog

Always Blocks

* In Verilog language, logic designed in always blocks can be
combinational or sequential circuit as a result of the

synthesis.

» Before synthesizing, it is not known whether the logic in
always blocks will be sequential or combinational circuitry.

16/33 Dr. V. E. Levent Computer Architecture

System Verilog

Always Blocks

* Also, the synthesis tool takes time to make this inference
(Combinational or Sequential Circuit).

17/33 Dr. V. E. Levent Computer Architecture

System Verilog

Always Blocks

* When designing a combinational circuit in structures such
as state machines, if the output of the combinational
circuit is forgotten to be encoded in all cases, a latch will
occur.

» Systemverilog language has 3 different always blocks to
eliminate such problems.

18/33 Dr. V. E. Levent Computer Architecture

System Verilog

Always Blocks
New blocks:
e always_comb

 always_latch
 always_ff

19/33 Dr. V. E. Levent Computer Architecture

System Verilog

always_comb block:
* Combinational circuits are designed in the always comb

block.

* There is no need to write a sensitivity list.

20/33 Dr. V. E. Levent Computer Architecture

System Verilog

module always comb test

(
always_comb: input logic a, b,
output logic y, =z
) ;
always comb begin
if (a > b) begin
y = L7
z = 0;

else if (a < b) begin
y = Uy

z = 1y

end

else begin
y = 17
z = 1;
end

end

endmodule

21/33 Dr. V. E. Levent Computer Architecture

System Verilog

always_comb:

O
S=default sz

TR :
< T RTL_MUX

s S=1'b1 10 | T
S=1'b1 - o
S=default 11
S=default t B
sT RTL_MUX

Synthesized Logic

22/33 Dr. V. E. Levent Computer Architecture

System Verilog

always_comb block:

* If latch occurs in the design, the synthesizer will warn during
synthesis.

23/33 Dr. V. E. Levent Computer Architecture

System Verilog

always_comb block:

Latch example
at always comb block

24/33

Dr. V. E. Levent

module top
(

input logic a, b,
output logic vy, z
) ;

always comb begin
if (a > b) begin

(2 < b) begin

endmodule

Computer Architecture

System Verilog

always_comb:

RTL_LATCH

RTL_LATCH

Synthesized Logic

25/33 Dr. V. E. Levent Computer Architecture

System Verilog

always_comb block:

* During synthesizing the design, synthesis tool output a latch
warning.

S,‘ntheSlS J Wwal :
[Synth 8-87] always_comb on ‘y_reg’ did not result in combinational logic [top 5v:9] (1 more like this)

[Synth 8-87] always_comb on Z_req did not result in combinational logic [top.sv.10]

[Synth 8-327] inferning |atch for variable 'y_reg' [top sv 9] (1
Synth 8-327] inferring latch for variable 'z_req' [top.sv.10]

26/33 Dr. V. E. Levent Computer Architecture

System Verilog

always_lat ch block:

* The always_latch block can be used in designs that require
the use of latch.

 Synthesis tool wont warn latch when the design contains
latch.

27/33 Dr. V. E. Levent Computer Architecture

System Verilog

always_lat ch block: modue tep
input logic a, b,
output logic vy, =z
) ;

always latch begin
Latch example if (a > b) begin

4

.
4

(2 < b) begin

endmodule

28/33 Dr. V. E. Levent Computer Architecture

System Verilog

always_lat ch block:

RTL LATCH

y_reg

D
G

Q

RTL_LATCH

29/33 Dr. V. E. Levent Computer Architecture

System Verilog

always_lat ch block:

* When the design is synthesized, it will not give any warning /
error (Vivado outputs latch warning, not in Menthor Graphics
Precision RTL synthesis tool).

* Likewise, when a design that does not contain a latch is placed
in a latch block, synthesis tool will output a warning.

30/33 Dr. V. E. Levent Computer Architecture

System Verilog

always_ff block:

* This block is used only to make sequential circuit definitions.

* The Sensitivity list is used.

31/33 Dr. V. E. Levent Computer Architecture

System Verilog

always_ff block:

module top
(

input logic clk, reset,
output logic y, =z

) ;
always ff @ (posedge clk, posedge reset) begin
Tal if (reset) begin
Flip-flop example st
Z <= ;
end
else begin
y <= L}
Z <= ;
end
end
endmodule

32/33 Dr. V. E. Levent Computer Architecture

System Verilog

always_ff block:

RTL_REG_ASYNC

33/33 Dr. V. E. Levent Computer Architecture

