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Course Plan

• Pipelining and Performance
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Improving Performance

• Parallelism

• Pipelining

• Both!
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Pipelining Example: The Instructions

N pieces, each built following same sequence:

Saw Drill Glue Paint
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Design 1: Sequential Schedule

Alice owns the room

Bob can enter when Alice is finished

Repeat for remaining tasks

No possibility for conflicts
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Sequential Performance

• Elapsed Time for 
Alice: 4

• Elapsed Time for 
Bob: 4

• Total elapsed time: 
4*N

• Can we do better?

time
1 2 3 4 5 6 7 8 …

Latency:
Throughput:
Concurrency: 

Latency: 4 hours/task
Throughput: 1 task/4 hrs
Concurrency: 1

CPI = 4
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Design 2: Pipelined Design

Partition room into stages of a pipeline

One person owns a stage at a 
time

4 stages

4 people working simultaneously

Everyone moves right in lockstep

AliceBobCarolDave
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Design 2: Pipelined Design

Partition room into stages of a pipeline

One person owns a stage at a time

4 stages

4 people working simultaneously

Everyone moves right in lockstep

It still takes all four stages for one job to complete

Alice
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Design 2: Pipelined Design

Partition room into stages of a pipeline

One person owns a stage at a time

4 stages

4 people working simultaneously

Everyone moves right in lockstep

It still takes all four stages for one job to complete

AliceBob
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Design 2: Pipelined Design

Partition room into stages of a 
pipeline

One person owns a stage at a time

4 stages

4 people working simultaneously

Everyone moves right in lockstep

It still takes all four stages for one job to complete

AliceBobCarolDave
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Pipelined Performance
time
1 2 3 4 5 6 7…

Latency: 4 
hrs/task
Throughput: 1 task/hr
Concurrency: 4

CPI = 1
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Pipelined Performance
Time
1     2       3       4       5      6 7      8     9     10

Latency: 4 cycles/task
Throughput: 1 task/2 cycles

Done: 4 cycles

Done: 6 cycles

CPI = 2

What if drilling takes twice as long, but gluing and paint take ½ as long?

Done: 8 cycles
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Lessons

• Principle:
• Throughput increased by parallel execution

• Balanced pipeline very important

• Else slowest stage dominates performance

• Pipelining:
• Identify pipeline stages

• Isolate stages from each other

• Resolve pipeline hazards
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Goals for today

Performance
• What is performance?

• How to get it?
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Performance

Complex question

• How fast is the processor?
• How fast your application runs?
• How quickly does it respond to you? 
• How fast can you process a big batch of jobs?
• How much power does your machine use?
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Measures of Performance

Clock speed
• 1 KHz, 103  Hz: cycle is 1 millisecond, ms, (10-6)

• 1 MHz, 106  Hz: cycle is 1 microsecond, us, (10-6)

• 1 Ghz,  109 Hz: cycle is 1 nanosecond, ns, (10-9)

• 1 Thz,  1012 Hz: cycle is 1 picosecond, ps, (10-12)

Instruction/application performance
• MIPs (Millions of instructions per second)

• FLOPs (Floating point instructions per second)

• GPUs: GeForce GTX Titan (2,688 cores, 4.5 Tera flops, 7.1 billion transistors, 42 Gigapixel/sec fill 
rate, 288 GB/sec)
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Measures of Performance

CPI: “Cycles per instruction”→ Cycle/instruction for on average

• IPC = 1/CPI

• Used more frequently than CPI

• Favored because “bigger is better”

• Different instructions have different cycle costs

• E.g., “add” typically takes 1 cycle, “divide” takes >10 cycles

• Depends on relative instruction frequencies
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Measures of Performance

CPI example

• Program has equal ratio: integer, memory, floating point

• Cycles per inst type: integer = 1, memory = 2, FP = 3

• What is the CPI? (33% * 1) + (33% * 2) + (33% * 3) = 2
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Measures of Performance

General public (mostly) ignores CPI

• Equates clock frequency with performance!

Which processor would you buy?

• Processor A: CPI = 2, clock = 5 GHz

• Processor B: CPI = 1, clock = 3 GHz

• B is faster (assuming same ISA/compiler)
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Measures of Performance

Latency
• How long to finish my program

– Response time, elapsed time, wall clock time

– CPU time: user and system time

Throughput

• How much work finished per unit time

Ideal: Want high throughput, low latency

… also, low power, cheap ($$) etc.  
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Example: Car vs. Bus

Car: speed = 60 km/hour, capacity = 5

Bus: speed = 20 km/hour, capacity = 60

Task: transport passengers 10 km

Latency (min) Throughput (30 Min)

Car

Bus

10 min

30 min

15 PPH

60 PPH

#2 Bus Throughput

#1 Car Throughput
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How to make the computer faster?

• Decrease latency

• Critical Path
• Longest path determining the minimum time needed for an operation
• Determines minimum length of clock cycle i. e. determines maximum clock 

frequency

• Optimize for latency on the critical path
• Parallelism 
• Pipelining
• Both
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Review: Single-Cycle Datapath

Single-cycle datapath

• Fetch, decode, execute one instruction/cycle

+ Low CPI, 1 by definition

– Long clock period: accommodate slowest insn

PC I$
Register

File
s1 s2 d D$

+
4
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B

New: Multi-Cycle Datapath

Multi-cycle datapath: attacks slow clock

• Fetch, decode, execute one insn over multiple cycles

• Allows insns to take different number of cycles

± Opposite of single-cycle: short clock period, high CPI

PC I$
Register

File
s1 s2 d D$

+
4

DO

A
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Single vs. Multi-cycle Performance

Single-cycle

• Clock period = 50ns, CPI = 1

• Performance = 50ns/insn

Multi-cycle: opposite performance split

+ Shorter clock period

– Higher CPI

Example

• branch: 20% (3 cycles), ld: 20% (5 cycles), ALU: 60% (4 cycle) 

• Clock period = 10ns, CPI = (20%*3)+(20%*5)+(60%*4) = 4

• Performance = 40ns/insn
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Multi-Cycle Instructions

But what to do when operations take diff. times?

E.g: Assume:
• load/store: 100 ns

• arithmetic: 50 ns

• branches: 33 ns

Single-Cycle CPU

10 MHz (100 ns cycle) with

– 1 cycle per instruction

ms = 10-3 second
us = 10-6 seconds
ns = 10-9 seconds
ps = 10-12 seconds

10 MHz

20 MHz

30 MHz
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Multi-Cycle Instructions

Multiple cycles to complete a single instruction

E.g: Assume:
• load/store: 100 ns

• arithmetic: 50 ns

• branches: 33 ns

Single-Cycle CPU
10 MHz (100 ns cycle) with

– 1 cycle per instruction

ms = 10-3 second
us = 10-6 seconds
ns = 10-9 seconds
ps = 10-12 seconds

10 MHz

20 MHz

30 MHz

Multi-Cycle CPU

30 MHz (33 ns cycle) with
• 3 cycles per load/store

• 2 cycles per arithmetic

• 1 cycle per branch
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Cycles Per Instruction (CPI)

Instruction mix for some program P, assume:

• 25% load/store  ( 3 cycles / instruction)

• 60% arithmetic  ( 2 cycles / instruction)

• 15% branches    ( 1 cycle / instruction)

Multi-Cycle performance for program P:

3 * .25 + 2 * .60 + 1 * .15 = 2.1

average cycles per instruction (CPI) = 2.1

Multi-Cycle @ 30 MHz

Single-Cycle @ 10 MHz

30M cycles/sec 2.1 cycles/instr ≈15 MIPS
vs
10 MIPS

MIPS = millions of instructions per second

= 10M cycles/sec  1 cycle/instr
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Total Time

CPU Time = # Instructions x CPI x Clock Cycle Time

Instructions per program: “dynamic instruction count”

• Runtime count of instructions executed by the program

• Determined by program, compiler, ISA

Cycles per instruction: “CPI”

• How many cycles does an instruction take to execute?

• Determined by program, compiler, ISA, micro-architecture
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Total Time

Seconds per cycle: clock period, length of each cycle

• Inverse metric: cycles/second (Hertz) or cycles/ns (Ghz)

• Determined by micro-architecture, technology parameters
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Total Time

CPU Time = # Instructions x CPI x Clock Cycle Time

E.g. Say for a program with 400k instructions, 30 MHz, CPI 2.1:

CPU [Execution] Time = ?

sec/prgrm = Instr/prgm x cycles/instr x seconds/cycle
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Total Time

CPU Time = # Instructions x CPI x Clock Cycle Time

E.g. Say for a program with 400k instructions, 30 MHz, CPI 2.1 :

CPU [Execution] Time = 400k x 2.1 x 33 ns = 27 ms

sec/prgrm = Instr/prgm x cycles/instr x seconds/cycle
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Total Time

CPU Time = # Instructions x CPI x Clock Cycle Time

E.g. Say for a program with 400k instructions, 30 MHz, CPI 2.1:

CPU [Execution] Time = 400k x 2.1 x 33 ns = 27 ms

How do we increase performance?

• Need to reduce CPU time
▪ Reduce #instructions
▪ Reduce CPI
▪ Reduce Clock Cycle Time

sec/prgrm = Instr/prgm x cycles/instr x seconds/cycle
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Example

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS) run 2x faster by 
making arithmetic instructions faster

Instruction mix (for P):
• 25% load/store,  CPI = 3 

• 60% arithmetic,  CPI = 2

• 15% branches,    CPI = 1

CPI = 0.25 x 3 + 0.6 x 2 + 0.15 x 1
= 2.1

Goal: Make processor run 2x faster, 
i.e. 30 MIPS instead of 15 MIPS
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Example

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS) run 2x faster by making arithmetic 
instructions faster

Instruction mix (for P):
• 25% load/store,  CPI = 3 
• 60% arithmetic,  CPI = 2 1
• 15% branches,    CPI = 1

First lets try CPI of 1 for arithmetic. 

• Is that 2x faster overall? 

• How much does it improve performance?

CPI = 0.25 x 3 + 0.6 x 2 + 0.15 x 1
= 1.5

No
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Example

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS) run 2x faster by making arithmetic instructions faster

Instruction mix (for P):
• 25% load/store,  CPI = 3 
• 60% arithmetic,  CPI = 2 X
• 15% branches,    CPI = 1

But, want to half our CPI from 2.1 to 1.05.

Let new arithmetic operation have a CPI of X.    X =?

Then, X = 0.25, which is a significant improvement

CPI = 1.05 = 0.25 x 3 + 0.6 x X + 0.15 x 1
1.05 = .75 + 0.6X + 0.15

X = 0.25
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Example

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS) run 2x faster by 
making arithmetic instructions faster

Instruction mix (for P):
• 25% load/store,  CPI = 3 

• 60% arithmetic,  CPI = 2 0.25

• 15% branches,    CPI = 1

To double performance CPI for arithmetic operations have to go from 2 to 0.25
but 0.25 CPI is not practically not possible
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Single Cycle vs Pipelined Processor

Single Cycle vs Pipelined Processor
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Single Cycle → Pipelining

insn0.fetch, dec, exec

Single-cycle

insn1.fetch, dec, exec

Pipelined

insn0.decinsn0.fetch

insn1.decinsn1.fetch

insn0.exec

insn1.exec
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Agenda

• 5-stage Pipeline

• Implementation

• Working Example

Hazards
• Structural
• Data Hazards
• Control 

Hazards
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Review: Single Cycle Processor

alu

PC

imm

memory

memory

din dout

addr

target

offset cmpcontrol

=?

new 

pc

register
file

inst

extend

+4 +4
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Pipelined Processor

alu

PC

imm

memory

memory

din dout

addr

control

new 

pc

register
file

inst

extend

+4

compute
jump/branch

targets

Fetch Decode Execute Memory WB
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Pipelined Processor

Write-
BackMemory

Instructio
n

Fetch

Execut
e

Instruction
Decode

extend

register
file

control

alu

memor

y

din
dou

t

addr
PC

memory

new

pc

in
st

IF/ID ID/EX EX/MEM MEM/WB
im

m
B

A
ct

rl

ct
rl

ct
rl

B
D D

M

compute
jump/branch

targets

+4
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Time Graphs
1 2 3 4 5 6 7 8 9Cycle

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Latency: 5 cycles
Throughput: 1 insn/cycle
Concurrency: 5

CPI = 1

add

nand

lw

add

sw
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Principles of Pipelined Implementation

• Break datapath into multiple cycles (here 5)

• Parallel execution increases throughput
• Balanced pipeline very important

• Slowest stage determines clock rate

• Imbalance kills performance

• Add pipeline registers (flip-flops) for isolation

• Resolve hazards
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Pipelined Processor

Write-
BackMemory

Instruction
Fetch Execute

Instruction
Decode

extend

register
file

control

alu

memory

din dout

addr

PC

memory

new

pc

in
st

IF/ID ID/EX EX/MEM MEM/WB
im

m
B

A
ct

rl

ct
rl

ct
rl

B
D D

M

compute
jump/branch

targets

+4
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Pipeline Stages

Stage
Perform 

Functionality
Register values of 

interest

Fetch
Use PC to index Program Memory, 
increment PC

Instruction bits (to be decoded)
PC + 4 (to compute branch targets)

Decode
Decode instruction, generate 
control signals, read register file

Control information, Rd index, 
immediates, offsets, register values (Ra, 
Rb), PC+4 (to compute branch targets)

Execute

Perform ALU operation
Compute targets (PC+4+offset, 
etc.) in case this is a branch,
decide if branch taken

Control information, Rd index, etc.
Result of ALU operation, value in case 
this is a store instruction

Memory
Perform load/store if needed,
address is ALU result

Control information, Rd index, etc.
Result of load, pass result from execute

Writeback Select value, write to register file
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Instruction Fetch (IF)

Stage 1: Instruction Fetch

Fetch a new instruction every cycle
• Current PC is index to instruction memory

• Increment the PC at end of cycle (assume no branches for now)

Write values of interest to pipeline register (IF/ID)
• Instruction bits (for later decoding)

• PC+4 (for later computing branch targets)
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Instruction Fetch (IF)

PC

instruction
memory

new

pc

addr mc

+4

- PC+4
- pc-rel (PC-relative); e.g. JAL, BEQ, BNE
- pc-reg (PC registers);  e.g. JALR
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Instruction Fetch (IF)

PC

instruction
memory

add
r

m
c

+4

in
st

IF/ID

R
es

t 
o

f p
ip

el
in

e

P
C

+4

00 = read word

pc-sel

pc-reg
pc-rel
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Decode

• Stage 2: Instruction Decode

• On every cycle:
• Read IF/ID pipeline register to get instruction bits

• Decode instruction, generate control signals

• Read from register file

• Write values of interest to pipeline register (ID/EX)
• Control information, Rd index, immediates, offsets, …

• Contents of Ra, Rb

• PC+4 (for computing branch targets later)
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Decode

ct
rl

ID/EX

R
es

t 
o

f p
ip

el
in

e

P
C

+4

in
st

IF/ID

P
C

+4

S
ta

g
e 

1:
 In
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ru

ct
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n
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ch

register
file
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Rd

Ra Rb

D

B

A

B
A

extend im
m

decode

result

dest
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Execute (EX)

• Stage 3: Execute

• On every cycle:
• Read ID/EX pipeline register to get values and control bits

• Perform ALU operation

• Compute targets (PC+4+offset, etc.) in case this is a branch

• Decide if jump/branch should be taken

• Write values of interest to pipeline register (EX/MEM)
• Control information, Rd index, …

• Result of ALU operation

• Value in case this is a memory store instruction



Computer ArchitectureDr. V. E. Levent

Execute (EX)

S
ta

g
e 

2:
 In

st
ru

ct
io

n
 

D
ec

o
d

e

pcre
l

ct
rl

EX/MEM

R
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f p
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el
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e

B
D
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rl

ID/EX

P
C

+4
B

A
alu

+

branch?

im
m

pcsel
pcre
g

ta
rg

e
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MEM

• Stage 4: Memory

• On every cycle:
• Read EX/MEM pipeline register to get values and control bits

• Perform memory load/store if needed
• address is ALU result

• Write values of interest to pipeline register (MEM/WB)
• Control information, Rd index, …

• Result of memory operation

• Pass result of ALU operation
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MEM

ct
r l

MEM/WB

R
es

t 
o

f p
ip

el
in

e

S
ta

g
e 

3:
 E

xe
cu

te

M
D

ct
rl

EX/MEM

B
D

memory

di

n

dou

t

addr

mcta
rg et
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pcre
l

pcreg
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WB

• Stage 5: Write-back

• On every cycle:
• Read MEM/WB pipeline register to get values and control bits

• Select value and write to register file
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WB

S
ta

g
e 

4:
 M

em
o

ry

ct
rl

MEM/WB

M
D

result

dest
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Putting it all together

IF/ID

+4

ID/EX EX/MEM MEM/WB

mem

di

n

dou

t

addr

PC

inst
mem

Rd

Ra Rb

D
B

A

R
d

in
st

P
C

+4

B
A

R
t

B
D

M
D

P
C

+4
im

m

O
P

R
d

O
P

R
d

O
P
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RISC-V is designed for pipelining

• Instructions same length
• 32 bits, easy to fetch and then decode

• 4 types of instruction formats
• Easy to route bits between stages

• Can read a register source before even knowing what the instruction is

• Memory access through lw and sw only
• Access memory after ALU


