
Computer Architecture

Fenerbahçe University

Week 7: Pipelining

Computer ArchitectureDr. V. E. Levent

Prof: Dr. Vecdi Emre Levent

Office: 311

Email: emre.levent@fbu.edu.tr

TA: Arş. Gör. Uğur Özbalkan

Office: 311

Email: ugur.ozbalkan@fbu.edu.tr

Professor & TAs

Computer ArchitectureDr. V. E. Levent

Course Plan

• Pipelining and Performance

Computer ArchitectureDr. V. E. Levent

Improving Performance

• Parallelism

• Pipelining

• Both!

Computer ArchitectureDr. V. E. Levent

Pipelining Example: The Instructions

N pieces, each built following same sequence:

Saw Drill Glue Paint

Computer ArchitectureDr. V. E. Levent

Design 1: Sequential Schedule

Alice owns the room

Bob can enter when Alice is finished

Repeat for remaining tasks

No possibility for conflicts

Computer ArchitectureDr. V. E. Levent

Sequential Performance

• Elapsed Time for
Alice: 4

• Elapsed Time for
Bob: 4

• Total elapsed time:
4*N

• Can we do better?

time
1 2 3 4 5 6 7 8 …

Latency:
Throughput:
Concurrency:

Latency: 4 hours/task
Throughput: 1 task/4 hrs
Concurrency: 1

CPI = 4

Computer ArchitectureDr. V. E. Levent

Design 2: Pipelined Design

Partition room into stages of a pipeline

One person owns a stage at a
time

4 stages

4 people working simultaneously

Everyone moves right in lockstep

AliceBobCarolDave

Computer ArchitectureDr. V. E. Levent

Design 2: Pipelined Design

Partition room into stages of a pipeline

One person owns a stage at a time

4 stages

4 people working simultaneously

Everyone moves right in lockstep

It still takes all four stages for one job to complete

Alice

Computer ArchitectureDr. V. E. Levent

Design 2: Pipelined Design

Partition room into stages of a pipeline

One person owns a stage at a time

4 stages

4 people working simultaneously

Everyone moves right in lockstep

It still takes all four stages for one job to complete

AliceBob

Computer ArchitectureDr. V. E. Levent

Design 2: Pipelined Design

Partition room into stages of a
pipeline

One person owns a stage at a time

4 stages

4 people working simultaneously

Everyone moves right in lockstep

It still takes all four stages for one job to complete

AliceBobCarolDave

Computer ArchitectureDr. V. E. Levent

Pipelined Performance
time
1 2 3 4 5 6 7…

Latency: 4
hrs/task
Throughput: 1 task/hr
Concurrency: 4

CPI = 1

Computer ArchitectureDr. V. E. Levent

Pipelined Performance
Time
1 2 3 4 5 6 7 8 9 10

Latency: 4 cycles/task
Throughput: 1 task/2 cycles

Done: 4 cycles

Done: 6 cycles

CPI = 2

What if drilling takes twice as long, but gluing and paint take ½ as long?

Done: 8 cycles

Computer ArchitectureDr. V. E. Levent

Lessons

• Principle:
• Throughput increased by parallel execution

• Balanced pipeline very important

• Else slowest stage dominates performance

• Pipelining:
• Identify pipeline stages

• Isolate stages from each other

• Resolve pipeline hazards

Computer ArchitectureDr. V. E. Levent

Goals for today

Performance
• What is performance?

• How to get it?

Computer ArchitectureDr. V. E. Levent

Performance

Complex question

• How fast is the processor?
• How fast your application runs?
• How quickly does it respond to you?
• How fast can you process a big batch of jobs?
• How much power does your machine use?

Computer ArchitectureDr. V. E. Levent

Measures of Performance

Clock speed
• 1 KHz, 103 Hz: cycle is 1 millisecond, ms, (10-6)

• 1 MHz, 106 Hz: cycle is 1 microsecond, us, (10-6)

• 1 Ghz, 109 Hz: cycle is 1 nanosecond, ns, (10-9)

• 1 Thz, 1012 Hz: cycle is 1 picosecond, ps, (10-12)

Instruction/application performance
• MIPs (Millions of instructions per second)

• FLOPs (Floating point instructions per second)

• GPUs: GeForce GTX Titan (2,688 cores, 4.5 Tera flops, 7.1 billion transistors, 42 Gigapixel/sec fill
rate, 288 GB/sec)

Computer ArchitectureDr. V. E. Levent

Measures of Performance

CPI: “Cycles per instruction”→ Cycle/instruction for on average

• IPC = 1/CPI

• Used more frequently than CPI

• Favored because “bigger is better”

• Different instructions have different cycle costs

• E.g., “add” typically takes 1 cycle, “divide” takes >10 cycles

• Depends on relative instruction frequencies

Computer ArchitectureDr. V. E. Levent

Measures of Performance

CPI example

• Program has equal ratio: integer, memory, floating point

• Cycles per inst type: integer = 1, memory = 2, FP = 3

• What is the CPI? (33% * 1) + (33% * 2) + (33% * 3) = 2

Computer ArchitectureDr. V. E. Levent

Measures of Performance

General public (mostly) ignores CPI

• Equates clock frequency with performance!

Which processor would you buy?

• Processor A: CPI = 2, clock = 5 GHz

• Processor B: CPI = 1, clock = 3 GHz

• B is faster (assuming same ISA/compiler)

Computer ArchitectureDr. V. E. Levent

Measures of Performance

Latency
• How long to finish my program

– Response time, elapsed time, wall clock time

– CPU time: user and system time

Throughput

• How much work finished per unit time

Ideal: Want high throughput, low latency

… also, low power, cheap ($$) etc.

Computer ArchitectureDr. V. E. Levent

Example: Car vs. Bus

Car: speed = 60 km/hour, capacity = 5

Bus: speed = 20 km/hour, capacity = 60

Task: transport passengers 10 km

Latency (min) Throughput (30 Min)

Car

Bus

10 min

30 min

15 PPH

60 PPH

#2 Bus Throughput

#1 Car Throughput

Computer ArchitectureDr. V. E. Levent

How to make the computer faster?

• Decrease latency

• Critical Path
• Longest path determining the minimum time needed for an operation
• Determines minimum length of clock cycle i. e. determines maximum clock

frequency

• Optimize for latency on the critical path
• Parallelism
• Pipelining
• Both

Computer ArchitectureDr. V. E. Levent

Review: Single-Cycle Datapath

Single-cycle datapath

• Fetch, decode, execute one instruction/cycle

+ Low CPI, 1 by definition

– Long clock period: accommodate slowest insn

PC I$
Register

File
s1 s2 d D$

+
4

Computer ArchitectureDr. V. E. Levent

B

New: Multi-Cycle Datapath

Multi-cycle datapath: attacks slow clock

• Fetch, decode, execute one insn over multiple cycles

• Allows insns to take different number of cycles

± Opposite of single-cycle: short clock period, high CPI

PC I$
Register

File
s1 s2 d D$

+
4

DO

A

Computer ArchitectureDr. V. E. Levent

Single vs. Multi-cycle Performance

Single-cycle

• Clock period = 50ns, CPI = 1

• Performance = 50ns/insn

Multi-cycle: opposite performance split

+ Shorter clock period

– Higher CPI

Example

• branch: 20% (3 cycles), ld: 20% (5 cycles), ALU: 60% (4 cycle)

• Clock period = 10ns, CPI = (20%*3)+(20%*5)+(60%*4) = 4

• Performance = 40ns/insn

Computer ArchitectureDr. V. E. Levent

Multi-Cycle Instructions

But what to do when operations take diff. times?

E.g: Assume:
• load/store: 100 ns

• arithmetic: 50 ns

• branches: 33 ns

Single-Cycle CPU

10 MHz (100 ns cycle) with

– 1 cycle per instruction

ms = 10-3 second
us = 10-6 seconds
ns = 10-9 seconds
ps = 10-12 seconds

10 MHz

20 MHz

30 MHz

Computer ArchitectureDr. V. E. Levent

Multi-Cycle Instructions

Multiple cycles to complete a single instruction

E.g: Assume:
• load/store: 100 ns

• arithmetic: 50 ns

• branches: 33 ns

Single-Cycle CPU
10 MHz (100 ns cycle) with

– 1 cycle per instruction

ms = 10-3 second
us = 10-6 seconds
ns = 10-9 seconds
ps = 10-12 seconds

10 MHz

20 MHz

30 MHz

Multi-Cycle CPU

30 MHz (33 ns cycle) with
• 3 cycles per load/store

• 2 cycles per arithmetic

• 1 cycle per branch

Computer ArchitectureDr. V. E. Levent

Cycles Per Instruction (CPI)

Instruction mix for some program P, assume:

• 25% load/store (3 cycles / instruction)

• 60% arithmetic (2 cycles / instruction)

• 15% branches (1 cycle / instruction)

Multi-Cycle performance for program P:

3 * .25 + 2 * .60 + 1 * .15 = 2.1

average cycles per instruction (CPI) = 2.1

Multi-Cycle @ 30 MHz

Single-Cycle @ 10 MHz

30M cycles/sec 2.1 cycles/instr ≈15 MIPS
vs
10 MIPS

MIPS = millions of instructions per second

= 10M cycles/sec  1 cycle/instr

Computer ArchitectureDr. V. E. Levent

Total Time

CPU Time = # Instructions x CPI x Clock Cycle Time

Instructions per program: “dynamic instruction count”

• Runtime count of instructions executed by the program

• Determined by program, compiler, ISA

Cycles per instruction: “CPI”

• How many cycles does an instruction take to execute?

• Determined by program, compiler, ISA, micro-architecture

Computer ArchitectureDr. V. E. Levent

Total Time

Seconds per cycle: clock period, length of each cycle

• Inverse metric: cycles/second (Hertz) or cycles/ns (Ghz)

• Determined by micro-architecture, technology parameters

Computer ArchitectureDr. V. E. Levent

Total Time

CPU Time = # Instructions x CPI x Clock Cycle Time

E.g. Say for a program with 400k instructions, 30 MHz, CPI 2.1:

CPU [Execution] Time = ?

sec/prgrm = Instr/prgm x cycles/instr x seconds/cycle

Computer ArchitectureDr. V. E. Levent

Total Time

CPU Time = # Instructions x CPI x Clock Cycle Time

E.g. Say for a program with 400k instructions, 30 MHz, CPI 2.1 :

CPU [Execution] Time = 400k x 2.1 x 33 ns = 27 ms

sec/prgrm = Instr/prgm x cycles/instr x seconds/cycle

Computer ArchitectureDr. V. E. Levent

Total Time

CPU Time = # Instructions x CPI x Clock Cycle Time

E.g. Say for a program with 400k instructions, 30 MHz, CPI 2.1:

CPU [Execution] Time = 400k x 2.1 x 33 ns = 27 ms

How do we increase performance?

• Need to reduce CPU time
▪ Reduce #instructions
▪ Reduce CPI
▪ Reduce Clock Cycle Time

sec/prgrm = Instr/prgm x cycles/instr x seconds/cycle

Computer ArchitectureDr. V. E. Levent

Example

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS) run 2x faster by
making arithmetic instructions faster

Instruction mix (for P):
• 25% load/store, CPI = 3

• 60% arithmetic, CPI = 2

• 15% branches, CPI = 1

CPI = 0.25 x 3 + 0.6 x 2 + 0.15 x 1
= 2.1

Goal: Make processor run 2x faster,
i.e. 30 MIPS instead of 15 MIPS

Computer ArchitectureDr. V. E. Levent

Example

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS) run 2x faster by making arithmetic
instructions faster

Instruction mix (for P):
• 25% load/store, CPI = 3
• 60% arithmetic, CPI = 2 1
• 15% branches, CPI = 1

First lets try CPI of 1 for arithmetic.

• Is that 2x faster overall?

• How much does it improve performance?

CPI = 0.25 x 3 + 0.6 x 2 + 0.15 x 1
= 1.5

No

Computer ArchitectureDr. V. E. Levent

Example

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS) run 2x faster by making arithmetic instructions faster

Instruction mix (for P):
• 25% load/store, CPI = 3
• 60% arithmetic, CPI = 2 X
• 15% branches, CPI = 1

But, want to half our CPI from 2.1 to 1.05.

Let new arithmetic operation have a CPI of X. X =?

Then, X = 0.25, which is a significant improvement

CPI = 1.05 = 0.25 x 3 + 0.6 x X + 0.15 x 1
1.05 = .75 + 0.6X + 0.15

X = 0.25

Computer ArchitectureDr. V. E. Levent

Example

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS) run 2x faster by
making arithmetic instructions faster

Instruction mix (for P):
• 25% load/store, CPI = 3

• 60% arithmetic, CPI = 2 0.25

• 15% branches, CPI = 1

To double performance CPI for arithmetic operations have to go from 2 to 0.25
but 0.25 CPI is not practically not possible

Computer ArchitectureDr. V. E. Levent

Single Cycle vs Pipelined Processor

Single Cycle vs Pipelined Processor

Computer ArchitectureDr. V. E. Levent

Single Cycle → Pipelining

insn0.fetch, dec, exec

Single-cycle

insn1.fetch, dec, exec

Pipelined

insn0.decinsn0.fetch

insn1.decinsn1.fetch

insn0.exec

insn1.exec

Computer ArchitectureDr. V. E. Levent

Agenda

• 5-stage Pipeline

• Implementation

• Working Example

Hazards
• Structural
• Data Hazards
• Control

Hazards

Computer ArchitectureDr. V. E. Levent

Review: Single Cycle Processor

alu

PC

imm

memory

memory

din dout

addr

target

offset cmpcontrol

=?

new

pc

register
file

inst

extend

+4 +4

Computer ArchitectureDr. V. E. Levent

Pipelined Processor

alu

PC

imm

memory

memory

din dout

addr

control

new

pc

register
file

inst

extend

+4

compute
jump/branch

targets

Fetch Decode Execute Memory WB

Computer ArchitectureDr. V. E. Levent

Pipelined Processor

Write-
BackMemory

Instructio
n

Fetch

Execut
e

Instruction
Decode

extend

register
file

control

alu

memor

y

din
dou

t

addr
PC

memory

new

pc

in
st

IF/ID ID/EX EX/MEM MEM/WB
im

m
B

A
ct

rl

ct
rl

ct
rl

B
D D

M

compute
jump/branch

targets

+4

Computer ArchitectureDr. V. E. Levent

Time Graphs
1 2 3 4 5 6 7 8 9Cycle

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Latency: 5 cycles
Throughput: 1 insn/cycle
Concurrency: 5

CPI = 1

add

nand

lw

add

sw

Computer ArchitectureDr. V. E. Levent

Principles of Pipelined Implementation

• Break datapath into multiple cycles (here 5)

• Parallel execution increases throughput
• Balanced pipeline very important

• Slowest stage determines clock rate

• Imbalance kills performance

• Add pipeline registers (flip-flops) for isolation

• Resolve hazards

Computer ArchitectureDr. V. E. Levent

Pipelined Processor

Write-
BackMemory

Instruction
Fetch Execute

Instruction
Decode

extend

register
file

control

alu

memory

din dout

addr

PC

memory

new

pc

in
st

IF/ID ID/EX EX/MEM MEM/WB
im

m
B

A
ct

rl

ct
rl

ct
rl

B
D D

M

compute
jump/branch

targets

+4

Computer ArchitectureDr. V. E. Levent

Pipeline Stages

Stage
Perform

Functionality
Register values of

interest

Fetch
Use PC to index Program Memory,
increment PC

Instruction bits (to be decoded)
PC + 4 (to compute branch targets)

Decode
Decode instruction, generate
control signals, read register file

Control information, Rd index,
immediates, offsets, register values (Ra,
Rb), PC+4 (to compute branch targets)

Execute

Perform ALU operation
Compute targets (PC+4+offset,
etc.) in case this is a branch,
decide if branch taken

Control information, Rd index, etc.
Result of ALU operation, value in case
this is a store instruction

Memory
Perform load/store if needed,
address is ALU result

Control information, Rd index, etc.
Result of load, pass result from execute

Writeback Select value, write to register file

Computer ArchitectureDr. V. E. Levent

Instruction Fetch (IF)

Stage 1: Instruction Fetch

Fetch a new instruction every cycle
• Current PC is index to instruction memory

• Increment the PC at end of cycle (assume no branches for now)

Write values of interest to pipeline register (IF/ID)
• Instruction bits (for later decoding)

• PC+4 (for later computing branch targets)

Computer ArchitectureDr. V. E. Levent

Instruction Fetch (IF)

PC

instruction
memory

new

pc

addr mc

+4

- PC+4
- pc-rel (PC-relative); e.g. JAL, BEQ, BNE
- pc-reg (PC registers); e.g. JALR

Computer ArchitectureDr. V. E. Levent

Instruction Fetch (IF)

PC

instruction
memory

add
r

m
c

+4

in
st

IF/ID

R
es

t
o

f p
ip

el
in

e

P
C

+4

00 = read word

pc-sel

pc-reg
pc-rel

Computer ArchitectureDr. V. E. Levent

Decode

• Stage 2: Instruction Decode

• On every cycle:
• Read IF/ID pipeline register to get instruction bits

• Decode instruction, generate control signals

• Read from register file

• Write values of interest to pipeline register (ID/EX)
• Control information, Rd index, immediates, offsets, …

• Contents of Ra, Rb

• PC+4 (for computing branch targets later)

Computer ArchitectureDr. V. E. Levent

Decode

ct
rl

ID/EX

R
es

t
o

f p
ip

el
in

e

P
C

+4

in
st

IF/ID

P
C

+4

S
ta

g
e

1:
 In

st
ru

ct
io

n
 F

et
ch

register
file

WE
Rd

Ra Rb

D

B

A

B
A

extend im
m

decode

result

dest

Computer ArchitectureDr. V. E. Levent

Execute (EX)

• Stage 3: Execute

• On every cycle:
• Read ID/EX pipeline register to get values and control bits

• Perform ALU operation

• Compute targets (PC+4+offset, etc.) in case this is a branch

• Decide if jump/branch should be taken

• Write values of interest to pipeline register (EX/MEM)
• Control information, Rd index, …

• Result of ALU operation

• Value in case this is a memory store instruction

Computer ArchitectureDr. V. E. Levent

Execute (EX)

S
ta

g
e

2:
 In

st
ru

ct
io

n

D
ec

o
d

e

pcre
l

ct
rl

EX/MEM

R
es

t
o

f p
ip

el
in

e

B
D

ct
rl

ID/EX

P
C

+4
B

A
alu

+

branch?

im
m

pcsel
pcre
g

ta
rg

e

t

Computer ArchitectureDr. V. E. Levent

MEM

• Stage 4: Memory

• On every cycle:
• Read EX/MEM pipeline register to get values and control bits

• Perform memory load/store if needed
• address is ALU result

• Write values of interest to pipeline register (MEM/WB)
• Control information, Rd index, …

• Result of memory operation

• Pass result of ALU operation

Computer ArchitectureDr. V. E. Levent

MEM

ct
r l

MEM/WB

R
es

t
o

f p
ip

el
in

e

S
ta

g
e

3:
 E

xe
cu

te

M
D

ct
rl

EX/MEM

B
D

memory

di

n

dou

t

addr

mcta
rg et

branch?pcsel

pcre
l

pcreg

Computer ArchitectureDr. V. E. Levent

WB

• Stage 5: Write-back

• On every cycle:
• Read MEM/WB pipeline register to get values and control bits

• Select value and write to register file

Computer ArchitectureDr. V. E. Levent

WB

S
ta

g
e

4:
 M

em
o

ry

ct
rl

MEM/WB

M
D

result

dest

Computer ArchitectureDr. V. E. Levent

Putting it all together

IF/ID

+4

ID/EX EX/MEM MEM/WB

mem

di

n

dou

t

addr

PC

inst
mem

Rd

Ra Rb

D
B

A

R
d

in
st

P
C

+4

B
A

R
t

B
D

M
D

P
C

+4
im

m

O
P

R
d

O
P

R
d

O
P

Computer ArchitectureDr. V. E. Levent

RISC-V is designed for pipelining

• Instructions same length
• 32 bits, easy to fetch and then decode

• 4 types of instruction formats
• Easy to route bits between stages

• Can read a register source before even knowing what the instruction is

• Memory access through lw and sw only
• Access memory after ALU

