Digital Design

Week 11: Optimizations and Trade-offs

Fenerbahce University

Lesson plan

• Optimizations and Trade-offs

- We know how to build digital circuits
 - How to build better circuits?
- Two major constraints
 - **Delay** (Latency) Elapsed time between input to output
 - Area Number of transistor

Note: Assume the gate delays are equivalent

• Tradeoff

- When 1 criterion improves, the other criterion worsens.
- Design is made by giving priority or balancing according to a criterion.

Note: Assume the gate delays are equivalent

- If possible, the design is made by optimizing, otherwise making a choice according to the requirements and making tradeoffs.
 - It is designed according to the target, such as how it is not the most comfortable, the most fuel-efficient and the fastest car.

- Space optimization
- Express the problem as a function
 - Simplify the equation with

Dr. V. E. Levent Digital Design

X

Karnaugh Maps

- Moore 's rules, it is very possible to miss expressions that can be simplified.
- Karnaugh Map (K-map)
 - Provides a graphical overview for simplification
 - Simplification is d1 by grouping expressions.
 - Simplification is made within the rectangle groups formed by

F = xyz + xyz' + x'y'z' + x'y'zF = xy (z + z') + x'y'(z + z')F = xy *1 + x'y '*1F = xy + x'y'

K-maps

- If there are 4 neighbor 1s, that value can be eliminated.
 - In other words, if the output is 1 in all cases, it means that it has no effect on the output.
 G = xy'z ' + xy'z + xyz + xyz '
 G = x(y'z '+ y'z + yz + yz ')
 G = x(y'(z'+z) + y(z+z'))
 G = x(y'+y)
 G = x

K-maps

• Examples

H = x'y'z + x'yz + xy'z + xyz

H = z

I = x'y'z + xy'z + xy'z + xyz + xyz ' I = x'y'z + xy'z + xy'z + xy'z + xyz + xyz 'I = (x'y'z + xy'z) + (xy'z' + xy'z + xyz + xyz

K-maps

- Rectangles can emerge from Kmap's boundaries from the opposite side.
- Rectangles must have multiples of 1, 2, 4, 8 ...

K-maps

- can be calculated by the same principle in Kmaps with 4 values
- F z y 0 1 0 1

- 5 and 6 value maps
 - However, it is very difficult to use

K-maps

• Example :

• H = a'b '(cd' + c'd ') + ab'c'd ' + ab'cd ' + a'bd + a'bcd '

H = b'd ' + a'bc + a'bd

Do n't Care Entries

- Some input combinations may not be entered at all
 - x, y, and z will never be 0 at the same time for the formula F = xy'z ' and x 1, y 0, z 1 will not be simultaneously, they can be written as negligible.
 - It can be thought of as 1 or 0 to help simplify the function
- in kmaps
 - X is written instead of ignored
 - Not to be confused with variable X

Brings too many terms in unnecessary use

dont Minimization

- Example :
 - F = a'bc ' + abc ' + a'b'c
 - Ignored entries :
 - a B C
 - a B C

Dr. V. E. Levent Digital Design

Condition Mitigation

- Reducing the number of states without changing the behavior of
 - Fewer states will likely result in less footprint
- FSMs for

V

input : x; Output : y

х

AND A COLOR OF A COLOR

Condition Mitigation

If the two conditions are equivalent

- If they assign the same value to the output
 - So SO and S2 are throwing 0 to the output,
 - S1 and S3 throw 1 to the output
- If starting from equivalent states and producing the same outputs when the same inputs come,
 - for example *x* =1,1,0,0,...
 - **S1** start , *y* =1,1,0,0,...
 - **S3 initial** , *y* =1,1,0,0,...

Statuses can be used in common.

Pipelining

Pipelining: It is a structure that divides a job into stages, where the stages feed data to each other and can work in parallel.

Sample;

- You are washing the dishes, your friend is setting up.
 - 1 plate washed
 - While 1 plate is dried , 2 plates are washed
 - While 2 dishes are being dried , 3 dishes are being washed...
 - You don't wait for your friend to finish drying the plate.

Pipelining Example

- S = W+X+Y+Z
- The left-hand circuit can receive inputs as fast as 4 ns .
- The circuit on the right can receive input in 2 ns as the fastest . Speed doubled.

Algorithm Selection

- The chosen algorithm has great influence
- Example : Searching for an element in a 256-address memory
 - Algorithm 1: "Linear search"
 - Each element is checked individually M[0], M[1], M[2], ...
 - Worst case 256 attempts
 - Algorithm 2: "Binary search "
 - Only takes 8 worst tries

Power Optimization

- **<u>Strength</u>** Another important design criterion is
 - Watts (Volts * Current)
- It is an important parameter as space consumption.
 - Especially important on mobile devices
 - With the developments in batteries, the required energy need does not increase at the same level.
 - Therefore, more power efficient designs are required.
 - CMOS technology, switching from 0 to 1 (Dynamic Power, Dynamic power)
 - $P = k * CV^2 f$
 - k: constant ;
 - C: capacitance of cables ;
 - V: voltage ;
 - f: Switching frequency

Power Optimization (Clock Gating)

• Exchange of signals within the chip increases power consumption

- The solution to this is to stop unused registers in certain situations.
 - Ande gate

Power Optimization (Clock Gating)

switching is reduced

Power Optimization (Low Power Gates)

- Low Power Gates
 - There can be multiple versions of doors performing the same task.
 - fast/high power consumption slow/low power consumption
 - critical path as slow/low power consumption, the power can be reduced without affecting the total delay.

