Digital Design

Week 11: Optimizations and

 Trade-offs

Fenerbahce University

Lesson plan

- Optimizations and Trade-offs

Optimizations and Trade-offs

- We know how to build digital circuits
- How to build better circuits?
- Two major constraints
- Delay (Latency) - Elapsed time between input to output
- Area - Number of transistor

Note: Assume the gate delays are equivalent

Optimizations and Trade-offs

- Tradeoff
- When 1 criterion improves, the other criterion worsens.
- Design is made by giving priority or balancing according to a criterion.

Note: Assume the gate delays are equivalent

Optimizations and Trade-offs

- If possible, the design is made by optimizing, otherwise making a choice according to the requirements and making tradeoffs.
- It is designed according to the target, such as how it is not the most comfortable, the most fuel-efficient and the fastest car.

Optimizations and Trade-offs

- Space optimization
- Express the problem as a function
- Simplify the equation with

Sample

$$
F=x y z+x y z^{\prime}+x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z
$$

$$
F=x y\left(z+z^{\prime}\right)+x^{\prime} y^{\prime}\left(z+z^{\prime}\right)
$$

$$
F=x y^{*} 1+x^{\prime} y^{\prime * 1}
$$

$$
F=x y+x^{\prime} y^{\prime}
$$

$$
6 \text { gates }
$$

Karnaugh Maps

- Moore 's rules, it is very possible to miss expressions that can be simplified.
- Karnaugh Map (K-map)
- Provides a graphical overview for simplification
- Simplification is d1 by grouping expressions.
- Simplification is made within the rectangle groups formed by

$$
F=x^{\prime} y^{\prime} z+x y z+x y z^{\prime}+x^{\prime} y^{\prime} z^{\prime}
$$

F

00	01	11	10	
0	1	1	0	0
1	0	0	1	1

K-maps

- If there are 4 neighbor 1 s , that value can be eliminated.
- In other words, if the output is 1 in all cases, it means that it has no effect on the output.
$G=x y^{\prime} z^{\prime}+x y^{\prime} z+x y z+x y z^{\prime}$
$G=x\left(y^{\prime} z^{\prime}+y^{\prime} z+y z+y z z^{\prime}\right)$
$G=x\left(y^{\prime}\left(z^{\prime}+z\right)+y\left(z+z^{\prime}\right)\right)$
$G=x\left(y^{\prime}+y\right)$
$\mathrm{G}=\mathrm{x}$

K-maps

- Examples

$$
H=x^{\prime} y^{\prime} z+x^{\prime} y z+x y^{\prime} z+x y z
$$

$\mathrm{H}=\mathrm{z}$

K-maps

- Rectangles can emerge from Kmap's boundaries from the opposite side.

- Rectangles must have multiples of 1 , 2, 4, 8 ...

K-maps

- can be calculated by the same principle in Kmaps with 4 values

- 5 and 6 value maps
- However, it is very difficult to use

K-maps

Do n't Care Entries

- Some input combinations may not be entered at all
- x, y, and z will never be 0 at the same time for the formula F $=x y^{\prime} z$ ' and $x 1, y 0, z 1$ will not be simultaneously, they can be written as negligible.
- It can be thought of as 1 or 0 to help simplify the function

- in kmaps
- X is written instead of ignored
- Not to be confused with variable X

Brings too many terms in unnecessary use

dont Minimization

- Example :
- F = a'bc ' + abc ' $+a^{\prime} b^{\prime} c$
- Ignored entries :
-a BC
- a B C

Condition Mitigation

- Reducing the number of states without changing the behavior of
- Fewer states will likely result in less footprint
- FSMs for

Condition Mitigation

If the two conditions are equivalent

If they assign the same value to the output

- So S0 and S2 are throwing 0 to the output,
- S1 and S3 throw 1 to the output

If starting from equivalent states and producing the same outputs when the same inputs come,

Input: x; Output : y

- for example $x=1,1,0,0, \ldots$
- S1 start , $y=1,1,0,0, \ldots$
- S3 initial , $y=1,1,0,0, \ldots$

Statuses can be used in common.

State S0 and S2 equivalent Case S1 and S3 equivalent

Pipelining

Pipelining: It is a structure that divides a job into stages, where the stages feed data
to each other and can work in parallel.

Sample;

- You are washing the dishes, your friend is setting up.
- 1 plate washed
- While 1 plate is dried , 2 plates are washed
- While 2 dishes are being dried , 3 dishes are being washed...
- You don't wait for your friend to finish drying the plate.

Time
without
W1 D1 W2 D2 W3 D3
with
w1 W2 w3
" Stage 1"
D1 D2 D3
" Stage 2"

Pipelining Example

- $\mathrm{S}=\mathrm{W}+\mathrm{X}+\mathrm{Y}+\mathrm{Z}$
- The left-hand circuit can receive inputs as fast as 4 ns .
- The circuit on the right can receive input in 2 ns as the fastest. Speed doubled.

Algorithm Selection

- The chosen algorithm has great influence

Power Optimization

- Strength Another important design criterion is
- Watts (Volts * Current)
- It is an important parameter as space consumption.
- Especially important on mobile devices
- With the developments in batteries, the required energy need does not increase at the same level.
- Therefore, more power efficient designs are required.
- CMOS technology, switching from 0 to 1 (Dynamic Power, Dynamic power)
- $P=k * C{ }^{2} f$
- k: constant;
- C: capacitance of cables ;
- V: voltage ;
- f: Switching frequency

Power Optimization (Clock Gating)

- Exchange of signals within the chip increases power consumption
- The solution to this is to stop unused registers in certain situations.
- Ande gate

Power Optimization (Clock Gating)

You heavily have a

Power Optimization (Low Power Gates)

- Low Power Gates

- There can be multiple versions of doors performing the same task.
- fast/high power consumption slow/low power

High Power Gates consumption

- critical path as slow/low power consumption, the power can be reduced without affecting the total delay.

