Digital Systems

Week 2: Number Systems and Boolean Algebra

Fenerbahce University

Instructors

Dr. Vecdi Emre Levent Office: 311 Email : emre.levent@fbu.edu.tr R.A. Ugur Ozbalkan Office: 311 Email : ugur.ozbalkan@fbu.edu.tr

Course Plan

- Number Systems
- Boolean Algebra

Why Digital Systems?

- Computer Hardware
 - Softwares that require performance can be only written by who have a deep understanding of hardware.
- Almost all electronic devices are digital
 - Audio recorders , cameras , vehicles ph1s , medical devices...
 - Developing equipment needed in almost every industry
 - It is an area that is highly needed both in our country and abroad. It could be a different career goal for you.

What Does Digital Mean?

- Analog Signal
 - It has infinite possible value.
 - For example, the vibration created by a microph1 on the line.

- Finite possible values
 - For example : Pressing a button on a keypad

Digital Signals with Only Two Values: Binary

- *Binary* digital signals have only two possible values
 - These are shown as 0 and 1
 - A binary digit is expressed as a "bit".
 - Within the scope of the course, binary digital systems will be considered.
 - Binary is popular because:
 - Transistors , the most basic digital electrical comp1nt , operate at two voltage values (0 and 1)

Advantages of Digitization

- Analogue signal is very sensitive to noise
 - During transmission, voltage levels may change due to many factors.
- Digital signals are more resistant to degradation during transmission.
 - Voltage levels still may not transmit perfectly
 - However, some distorted 1s and 0s can be recovered.

Digitized Content, Compression Benefits

- Digitized Audios can be compressed
 - eg. MP3
- Compression can also be d1 on photos (jpeg) or videos (mpeg)
- Digitization has many different advantages.

Example Compression Table 00 --> 000000000 01 --> 111111111 1X --> X

Binary Data Encode

- If button is not pressed (0), if pressed (1)
- Multi-button : coding 1st button =001, 2nd button =010, ...
- Some inputs are analog
 - Requires an analog-to-digital converter to switch to digital.
- ADC (Analog to Digital Converter): Converts analog signal to digital
- DAC (Digital to Analog Converter): Converts digital signal to analog

ASCII Encoding

• ASCII: 8 bits of each character and symbol. It is a table with the corresponding

Symbol	Mœstding	Symbol	M ost ding
R	1010010	r	1110010
S	1010011	S	1110011
Т	1010100	t	1110100
L	1001100	T	1101100
Ν	1001110	n	1101110
ТО	1000101	to	1100101
0	0110000	9	0111001
	0101110	!	0100001
<tab></tab>	0001001	<space></space>	0100000

1010010 1000101 1010011 1010100

REST

Dec	Ю	c Oct	Char	r	Dec	Hx	Oct	Html	Chr	Dec	Hb	Oct	Html	Chr	Dec	Hx	Oct	Html Cł	۱r
0	0	000	NUL	(null)	32	20	040	¢#32;	Space	64	40	100	s#64;	8	96	60	140	¢#96;	
1	1	001	SOH	(start of heading)	33	21	041	¢∰33;	1	65	41	101	6#65;	A	97	61	141	∉#97;	a
2	2	002	STX	(start of text)	34	22	042	¢∰34;		66	42	102	6∯66;	В	98	62	142	⊊∰98;	b
3	3	003	ETX	(end of text)	35	23	043	6∰35;	#	67	43	103	6∯67;	С	99	63	143	¢#99;	C
-4	4	004	EOT	(end of transmission)	36	24	044	‰∰36;	÷ .	68	44	104	6∯68;	D	100	64	144	‰#100;	d
.5	5	005	ENQ	(enquiry)	37	25	045	¢≇37;	÷	69	45	105	6∯69;	Ε	101	65	145	‰#101;	e
6	6	006	ACK	(acknowledge)	38	26	046	‰∰38;	6	70	46	106	6∯70;	F	102	66	146	f	£
7	7	007	BEL	(bell)	39	27	047	‰#39;	1 I I	71	47	107	6#71;	G	103	67	147	g	g
8	8	010	BS	(backspace)	40	28	050	‰#40;	()	72	48	110	6#72;	н	104	68	150	‰#104;	h
9	9	011	TAB	(horizontal tab)	41	29	051	¢#41;)	73	49	111	6#73;	I	105	69	151	‰#105;	1
10	A	012	LF	(NL line feed, new line)	42	ZA	052	¢#42;	*	74	48	112	6#74;	1	106	6A	152	j	3
11	в	013	VT	(vertical tab)	43	2B	053	&≇43;	+	75	4B	113	6#75;	K	107	6B	153	k	k
12	c	014	FF	(NP form feed, new page)	44	2C	054	¢#44;	1	76	4C	114	6#76;	Г	108	6C	154	l	1
13	D	015	CR	(carriage return)	45	2D	055	6#45;	- 1	77	4D	115	6,977;	М	109	6D	155	m	ш
14	Ε	016	S0	(shift out)	46	2E	056	a#46;	• • •	78	4E	116	6#78;	N	110	6E	156	‰#110;	n
15	F	017	SI	(shift in)	47	2F	057	6#47;	/	79	4F	117	6#79;	0	111	6F	157	‰#111;	0
16	10	020	DLE	(data link escape)	48	30	060	0	0	80	50	120	≤#80;	P	112	70	160	p	p
17	11	021	DCI	(device control 1)	49	31	061	6#49;	1	81	51	121	6#81;	Q	113	71	161	q	q
18	12	022	DC2	(device control 2)	50	32	062	2	2	82	52	122	<i>≤#</i> 82;	R	114	72	162	r	r
19	13	023	DC3	(device control 3)	51	33	063	3	3	83	53	123	6#83;	3	115	73	163	a#115;	3
20	14	024	DC4	(device control 4)	52	34	064	&≇52;	4	84	54	124	s#84;	Т	116	74	164	t	t.
21	15	025	NAK	(negative acknowledge)	53	35	065	&≇53;	5	85	55	125	≤#85;	U	117	75	165	u	u –
22	16	026	SYN	(synchronous idle)	54	36	066	6	6	86	56	126	≤#86;	v	118	76	166	v	v
23	17	027	ETB	(end of trans, block)	55	37	067	7	7	87	57	127	6#87;	W	119	77	167	w	a.
24	18	030	CAN	(cancel)	56	38	070	& #56 ;	8	88	58	130	4 # 88;	X	120	78	170	x	×
25	19	031	ЕM	(end of medium)	57	39	071	&≇57;	9	89	59	131	≤#89;	Y	121	79	171	y	У
26	1A	032	SUB	(substitute)	58	ЗA	072	& # 58;		90	5Å	132	4#90;	Z	122	7A	172	z	Z .
27	1B	033	ESC	(escape)	59	ЗВ	073	¢#59;	2	91	5B	133	<#91;	L.	123	7B	173	{	1
28	10	034	FS	(file separator)	60	зc	074	‰#60;	<	92	5C	134	4 # 92;	1	124	7C	174	a#124;	1
29	1D	035	GS	(group separator)	61	ЗD	075	a#61;	-	93	5D	135	6 # 93;	1	125	7D	175	})
30	1E	036	RS	(record separator)	62	ЗE	076	&≇62;	>	94	5E	136	<#94;	^	126	7E	176	~	~
31	1F	037	US	(unit separator)	63	ЗF	077	&≇63;	2	95	5F	137	4 # 95;	_	127	7F	177		DEF

Dr. V. E. Levent Digital Systems

Numbers Encoding

• Decimal base (<i>decimal</i>)	
• There are 10 symbols : 0, 1, 2,, 8, and 9	2 ⁹ 2 ⁸ 2 ⁷ 2 ⁶ 2 ⁵ 2 ⁴ 2 ³ 2 ² 2 ¹ 2 ⁰
 After 9 comes a new digit So each digit is a power of 10. 	512 256 128 64 32 16 8 4 2 1
 Base of 10 is used as it is suitable for daily life operations. 	5 2 3
• Binary Base (<i>binary</i>)	$10^2 \ 10^1 \ 10^0$
 There are two symbols : 0 and 1 	
 New power comes after 1 	1 0 1
 So each digit is a power of 2. 	$\frac{1}{2^4} \frac{1}{2^3} \frac{1}{2^2} \frac{1}{2^1} \frac{1}{2^0}$

Moore 's Rule

• The rule is that the number of transistorson chips doubles every 18 months .

Dr. V. E. Levent Digital Systems

Logic Gates are built with

NOT/OR/AND Logic Gates Time Diagram

Boolean Algebra Example

а	b	AND
0	0	0
0	1	0
1	0	0
1	1	1

•	a=1,	b=1,	c=1,	d=0
---	------	------	------	-----

F = (a AND b) OR (c AND d)

Answer : F = (1 AND 1) OR (1 AND 0)= 1 OR 0 = 1.

Boolean Algebra Example

- boolean equation
 - given below F = a AND NOT(b OR NOT(c))

Boolean Algebra Properties

- Change (Commutative)
 - a + b = b + a
 - a * b = b * a
- Distribution
 - a * (b + c) = a * b + a * c
 - a + (b * c) = (a + b) * (a + c)

- Relational
 - (a + b) + c = a + (b + c)
 - (a * b) * c = a * (b * c)
- Complementary
 - a + a' = 1
 - a * a' = 0

Boolean Algebra Properties

Example

- abc + abc ' = ab
 - Distribution Feature
 - abc + abc ' = ab(c+c ').
 - Association Feature
 - c+c ' has been replaced by 1 : ab(c+c ') = ab(1).
 - ab(1) = ab*1 = ab.

THE UNITED STREET

Boolean Algebra

- Operations with constants
 - a + 1 = 1
 - a + 0 = a
 - a * 1 = a
 - a * 0 = 0
- Ineffective Transactions
 - a+a=a
 - a * a = a
- Get the inverse
 - (a')' = a
- DeMorgan's Rule
 - (a + b)' = a'b '
 - (ab)' = a' + b'

- Staring circuit
 - S = a' + b' + c'
- Transformation
 - a'+ b'+ c'
 - ((a'+ b'+ c')')'
 - S = (abc)'

Truth Tables

- F indicates output.
 - 2- Input : 4 lines
 - 3- Input : 8 lines
 - 4- Input : 16 lines

Circuit Common Use

