Digital Systems

Week 2: Number Systems and Boolean Algebra Part II

Fenerbahce University

Course 2 Content

- Bits and Data Types
 - The smallest unit of information is bits
 - Data types
- Integer Data Types
 - Unsigned integers
 - Signed integers
- Complements (2's complement)
 - How are processors made with digital logic structures?
 - How do operations execute on processors?
- Binary to Decimal Conversions
 - From binary to decimal conversion
 - From decimal to binary conversion

Course 2 Content

- Operations on bits, Arithmetic Operations
 - Addition and subtraction
 - Sign extension
 - Overflow
- Operations on bits, Logic Operations
 - And/ Or
 - Not
 - Exclusive Or (XOR)
- Other Impressions
 - Bit vector
 - Floating Point data type
 - ASCII codes
 - Hexadecimal notation

- The computer is an electronic circuit.
 - It basically works by controlling the flow of electrons.

Dr. V. E. Levent Digital Systems

- Electrons are controlled by "Transistors".
 - It basically works by controlling the flow of electrons.

Dr. V. E. Levent Digital Systems

- Electrons are controlled by "Transistors".
 - It basically works by controlling the flow of electrons.

- Electrons are controlled by "Transistors".
 - It basically works by controlling the flow of electrons.

- Data has two states :
 - 1. the voltage (Voltage) exists This state is called "1".
 - 2. The state where the voltage disappears This state is called "0".

- It is also possible to make a computer that works according to more than two voltage states.
 - But the control circuit of this computer will be much more complex.

- For this reason, today's modern computers work with the concept of bit, which is the smallest unit, while expressing information.
- It is the smallest data storage unit that can hold 0 or 1 on a bit.

Binary system :

- It has two states : 0 and 1
- Larger storage areas are obtained by combining multiple bits.
 - two bits , 4 different numbers can be expressed.

• Two bits , 4 different numbers can be expressed.

- 00 = 0 (in decimal)
- 01 = 1
- 10 = 2
- 11 = 3

- 3 bits 8 numbers can be expressed by combining them :
- 000 = 0
- 001 = 1
- 010 = 2
- 011 = 3
- 100 = 4
- 101 = 5
- 110 = 6
- 111 = 7

- In summary;
- <u>2ⁿ</u> with n bits-different numbers can be expressed.
- <u>2</u>= 4 different numbers for <u>2</u> bits
- 2^{3} = 8 different numbers for 3 bits
- 2^{4} = 16 different numbers for 4 bits

can be expressed.

...

What types of data are expressed / stored in the computer?

- Numbers signed (unsigned), integers, decimal numbers (floating _ _ _ _ _ point), complex numbers (complex), rational, irrational, ...
- Texts Characters (characters) , texts (string) , ...
- Images pixels , images , ...
- Sound
- Logic (logic) true (true), false (false)
- Operations (Instructions)
- ...
- Let's start with the numbers ...

Unsigned (Unsigned) Integers (Integers)

- Unsigned integers
 - They always store positive values

• Ex :

 $329 (in base 10) \qquad 101 (in base 2) \\ 10^{2} 10^{1} 10^{0} \qquad 2^{2} 2^{1} 2^{0} \\ 3x100 + 2x10 + 9x1 = 329 \qquad 1x4 + 0x2 + 1x1 = 5$

Unsigned Integers

 An n - bit unsigned integer 2ⁿ has a value : from 0 to 2ⁿ-1.

2 ²	2 ¹	2 ⁰	
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1_	1_	1_	7_

Unsigned Binary Base Arithmetic

• Binary base addition (like base 10)

• It is collected starting from the rightmost, and if it is available, it is transferred to the next total.

10010	10010	1111
+ 1001	+1011	+ 1
11011	11101	10000

Signed Integers (Integrs)

• With n bits , we can store 2 ⁿ different values .

- 2 ⁿ different value;
- Signed integers are obtained by assigning half to positive numbers and half to negative numbers.
- Positive numbers 1 to 2ⁿ⁻¹
 Negative numbers -(2ⁿ⁻¹) to -1
- For example, if we have a 3-bit storage;
- Positive numbers are from 1 to 4 and negative numbers are from -4 to -1.

Signed Integers (Integrs)

- For example, if we have a 3-bit storage;
- Positive numbers are from 1 to 4 and negative numbers are from -4 to -1.
- If the number 0 is also used, a number from either positive or negative part is expressed as 0.

Signed Integers (Integrs)

- Positive integers
 - They are like unsigned integers. 00101 = 5
- Negative integers
 - Sign Bit Representation Always sign bit is first bit, Other bits are written as in unsigned representation. 10101 = -5
 - 1 's complement Each bit is inverted . 11010 = -5
 - In both representations, the largest bit represents the sign of the number :
 0= positive , 1= negative

Two's complement

- Sign bit notation and 1 's complement problems
 - The number 0 has two representations (+0 and -0)
 - Sign Bit
 0 0 0 0 0 = +0
 1 0 0 0 0 = -0
 - 1 's complement

00000 = +011111 = -0

AND THE PARTY OF T

Two's complement

- Sign bit notation and 1 's complement problems
 - The necessary hardware circuits of arithmetic operations are very complex.
 - Problem with sign bit denoted addition
 - 1 0 1 1 (-3)
 - + 0010(2)
 - $1 \quad 1 \quad 0 \quad 1 \quad (-5) \rightarrow Wrong$
 - For the solution, before adding, it is necessary to check which one is larger, subtract the smaller from the larger, and place the sign of the larger number.
 - Therefore, it is necessary to have a circuit, subtractor and sign bit setter in the necessary hardware to perform the necessary addition process. That is, the hardware becomes complex and large.

ALL CE UNIL FRS TESS

Two's Complement

- If the value to be expressed is 0 or positive ,
 - They are written as unsigned integers, with the largest bits filled with 0.
- If the number is negative ,
 - written as a positive number
 - Each bit is inverted (1's complement)
 - 1 is added to the result.

 $\begin{array}{c} 00101 \ (5) \\ 11010 \ (1 \ \text{s complement}) \end{array} \begin{array}{c} 01001 \ (9) \\ 1 \ 0110 \ (1 \ \text{s complement}) \end{array} \\ \begin{array}{c} + \ 1 \\ 10111 \ (-5) \end{array} \begin{array}{c} 1 \ 01011 \ (-9) \end{array}$

Dr. V. E. Levent Digital Systems

Two's Complement

- Shortcut to find Two's complement :
 - Copy bits of the number from right to left until you see the first "1"
 - Reverse remaining bits

Two's complement

- Biggest bit sign bit and weight -2^{n-1} is .
- -2 ⁿ⁻¹ with n bits It can be expressed from 2 ⁿ⁻¹ to 1.
 - The smallest negative number (-2 ⁿ⁻¹) has no positive counterpart .

-2 ³	2 ²	2 ¹	2 ⁰		-2 ³	2 ²	2 ¹	2 ⁰	
0	0	0	0	0	1	0	0	0	-8
0	0	0	1	1	1	0	0	1	-7
0	0	1	0	2	1	0	1	0	-6
0	0	1	1	3	1	0	1	1	-5
0	1	0	0	4	1	1	0	0	-4
0	1	0	1	5	1	1	0	1	-3
0	1	1	0	6	1	1	1	0	-2
0	1	1	1	7	1	1	1	1	-1

Dr. V. E. Levent Digital Systems

Convert binary complement to base 10

- 1. If the largest bit (leftmost) is 1, take the twos complement of the number and find its positive value.
- 2. Add the values by multiplying by powers of 2, starting with the rightmost bit.
- 3. If the number is negative when starting the process (i.e. its leftmost bit is 1), put a sign on the base 10 number that appears.

X = 01101000 _{binary}
=
$$2^{6}+2^{5}+2^{3}=64+32+8$$

= 104 _{tens}

n	2 <i>n</i>
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024

Convert binary complement to base 10

X = 00100111 _{binary}
=
$$2^{5}+2^{2}+2^{1}+2^{0}=32+4+2+1$$

= 39 _{tens}

X = 11100110 _{binary}
-X = 00011010
=
$$2^{4}+2^{3}+2^{1}=16+8+2$$

= 26 _{tens}
X = -26 _{tens}

n	2 ⁿ
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024

Decimal to Binary Complement Conversion

- Method 1 : *Division*
- 1. Get the absolute value of the decimal number . (It should always be positive .)
- 2. Divide by two remainder is the smallest bit .
- 3. Keep dividing until you find 0, and write the remainder of the divisions from right to left.
- 4. Add zeros to the most right for completing width of the number. (in the example below the number is assumed to be 8 bits) If the decimal number is negative, take the binary complement of the resulting number.

$X = 104_{tens}$	104/2 =	52 k0	bit 0
	52/2 =	26 k0	bit 1
	26/2 =	13 k0	bit 2
	13/2 =	6 k1	bit 3
	6/2 =	3 k0	bit 4
	3/2 =	1 k1	bit 5
$X = 01101000_{binary}$	1/2 =	0 k1	bit 6

Dr. V. E. Levent Digital Systems

Decimal to Binary Complement Conversion

- Second Method : *Subtracting powers of 2*
- 1. Get the absolute value of the decimal number.
- 2. Subtract the number less than or equal to the number from the powers of 2.
- 3. Place 1 in the relevant place .
- 4. Keep going until you get 0.
- 5. Add zeros to the most right for completing width of the number. If the decimal number is negative, take the binary complement of the resulting binary number

n	2 ⁿ
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024

Decimal to Binary Complement Conversion

V 101	404 04	4.0	
$\Lambda = 104_{\text{tens}}$	104 - 64 =	40	bit 6
	40 - 32 =	8	bit 5
	8 - 8 =	0	bit 3
$X = 01101000_{binary}$			

n	2 ⁿ
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024

Addition

- Binary complement numbers is similar to the addition of unsigned numbers. No control mechanism is required.
 - The hand bit to be obtained from the largest bit is discarded.

01101000 (104) + 11110000 (-16) 01011000 (88)

Subtraction

• Find the negative form of the second number and add .

 Binary complement of the second number and add it with the first number

Sign Extension

- When adding two numbers, both numbers must have the same bit width.
- If we just add 0 to the left of the two numbers to make them the same bit width;

<u>**4-bit 8-bit</u></u> 0100 (4) 0000100 (currently 4) 1100 (-4) 00001100 (12, not -4)</u>**

 For correct calculation, the sign bit of the number is placed where it will be expanded.
 <u>4-bit</u> <u>8-bit</u> 0100 (4) 00000100 (currently 4)

1100 (-4) **11111100** (currently -4)

Dr. V. E. Levent Digital Systems

Overflow

• When numbers are very large , the sum may turn out to be too large to be expressed in n-bit numbers .

	01000	(8)	11000	(-8)
+	01001	(9)	+10111	(-9)
	10001	(-15)	01111	(+15)

• Overflow status :

• It can happen in addition operations where both numbers have the same sign .

Logic Operations

- Are calculated as
 - There are two cases, True =1, False =0

A	Β	A and B		A	Β	A or B	Α	Not A
0	0	0	_	0	0	0	0	1
0	1	0		0	1	1	1	0
1	0	0		1	0	1		
1	1	1		1	1	1		

AND THE CE UNIT HEST FOR

Logic Operation Examples

• And

- With 0 = result is 0
- With 1 = result no change

11000101 and 00001111 00000101

• Or

- With 0 or operation = no change
- With 1 or operation = 1

• Not

• It changes every bit.

11000101 or 00001111 11001111

not 11000101 00111010

Hexadecimal Notation

- It is a 16 bit format that is frequently used on computers.
 - Each 4 bits of a binary number represents a hexadecimal representation.
 - It provides fewer mistakes than using long 0's and 1's.

Bin	Hex	Dec	Bin	Hex	Dec
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	Α	10
0011	3	3	1011	В	11
0100	4	4	1100	С	12
0101	5	5	1101	D	13
0110	6	6	1110	E	14
0111	7	7	1111	F	15

Converting from Binary to Hexadecimal

- Each 4 bits equals 1
 - They are grouped starting from the right.

Decimal Numbers : Fixed -Point Representation

- Decimals expression
 - A point is chosing for seperating integer and fraction parts
 - Addition and subtration operations are calculating as twos complement operations

$$2^{-1} = 0.5$$

$$2^{-2} = 0.25$$

$$2^{-3} = 0.125$$

$$00101000.101 (40.625)$$

$$+ 1111110.110 (-1.25)$$

$$00100111.011 (39.375)$$

Very Large and Very Small Numbers : Floating Point

- Very large numbers : 6.023 x 10^{23 --} Requires
- Very small numbers : 6.626 x 10 -34 -- Requires
- Clled "scientific notation" : fraction 2 Force
- fraction (*fraction*), force (*exp1nt*), and It is expressed as sign (I).
- IEEE 754 Floating Point Representation (32-bits):

Number = $(-1)^i \times 1$. fraction $\times 2^{\text{power}-127}$, $1 \le \text{power} \le 254$ Number = $(-1)^i \times 0$. fraction $\times 2^{-126}$, power = 0

Dr. V. E. Levent Digital Systems

Floating Point Example

- IEEE floating point representation

- Sign bit is 1, so the number is negative
- Force: 01111110 = 126.
- Fraction: 0.10000000000... = 0.5.

• Value = $-1.5 \times 2^{(126-127)} = -1.5 \times 2^{-1} = -0.75$.

Texts : ASCII Characters

• The ASCII table is an 8-bit table. Each number between 0-255 has a corresponding character or control signal.

00	nul	10	dle	20	sp	30	0	40	6	50	P	60	`	70	p
01	soh	11	dc1	21	!	31	1	41	A	51	Q	61	а	71	q
02	stx	12	dc2	22	**	32	2	42	В	52	R	62	b	72	r
03	etx	13	dc3	23	#	33	3	43	С	53	S	63	С	73	S
04	eot	14	dc4	24	\$	34	4	44	D	54	Т	64	d	74	t
05	enq	15	nak	25	00	35	5	45	Е	55	U	65	е	75	u
06	ack	16	syn	26	&	36	6	46	F	56	v	66	f	76	v
07	bel	17	etb	27	۲	37	7	47	G	57	W	67	g	77	W
80	bs	18	can	28	(38	8	48	H	58	x	68	h	78	x
09	ht	19	em	29)	39	9	49	I	59	Y	69	i	79	У
0a	nl	1a	sub	2a	*	3a	:	4a	J	5a	Z	6a	j	7a	Z
0b	vt	1b	esc	2b	+	3b	;	4b	K	5b	[6b	k	7b	{
0c	np	1c	fs	2c	,	3c	<	4c	L	5c	\mathbf{N}	6c	1	7c	I
0d	cr	1d	gs	2d	-	3d	=	4d	Μ	5d]	6d	m	7d	}
0e	so	1e	rs	2e	•	3e	>	4e	N	5e	^	6e	n	7e	~
0f	si	1f	us	2f	/	3f	?	4f	0	5f		6f	0	7f	del

Dr. V. E. Levent Digital Systems

ALLE UNITERSITES

Other Data Types

• Texts

- Formed by sequential writing of characters
- Image
 - They are formed by the combination of pixels.
 - Black and White : 1 bit (1/0 = black / white)
 - Color : Red, Blue, Green (RGB) comp1nts are available. Each is stored as 8-bit numbers.
- Sound
 - It is usually represented as a sequential recording of fixedpoint notation numbers.