Digital Design

Week 3: Combinational Logic Part II

Fenerbahce University

Combinational Circuits

- Combinational Circuits
 - Decoder
 - Selective (Multiplexer)
 - Full Adder

From Logic Gates to Control Units

• Combinational Circuits

- The output of the circuit depends on the current input.
- The output delay of the circuit depends on the longest path in the circuit.

From Logic Gates to Control Units

- Sequential Circuits
 - The output depends on both the current input and the values in memory.
 - Some outputs of the circuit are stored in memory and reused.
 - We'll get into the details next week.

Decoder

• *n* input , 2 ^{*n*} exit

• Only one output can be one at same time

2-bit Decoder Example

HCE UNIT HASTER

Decoder

• *n* input , 2 ^{*n*} exit

• Only one output can be one at same time

Dr. V. E. Levent Digital Design

SANAL + 2016 + 2016 +

Multiplexer - MUX

• *n* - bit select, 2^{*n*} input and It has only one output.

• According to the select bit, the value from the input is transferred to the output.

2 -1 MUX

4-1 MUX

Selector (Multiplexer - MUX)

• *n* - bit select, 2^{*n*} input and It has only one output.

• According to the select bit, the value from the input is transferred to the output.

2 -1 MUX

Selector (Multiplexer - MUX)

• *n* - bit select, 2^{*n*} input and It has only one output.

 According to the select bit, the value from the input is transferred to the output.

Full Adder

• Taking two bits (A and B) and a carry input (Cin), it produces a one-bit sum (S) and carry (Cout) .

4-bit Adder

Other Circuits

• Any circuit can be expressed with And, Or and Not gates.

1. In the truth table, do and operation for 1 outputting rows

2. Combine these and gates with or gate