Digital Design

Week 3: Combinational Logic Part II

Fenerbahce University

Combinational Circuits

- Combinational Circuits
- Decoder
- Selective (Multiplexer)
- Full Adder

From Logic Gates to Control Units

- Combinational Circuits
- The output of the circuit depends on the current input.
- The output delay of the circuit depends on the longest path in the circuit.

From Logic Gates to Control Units

- Sequential Circuits
- The output depends on both the current input and the values in memory.
- Some outputs of the circuit are stored in memory and reused.
- We'll get into the details next week.

Decoder

- n input , 2^{n} exit
- Only one output can be one at same time

Decoder

- n input , 2^{n} exit
- Only one output can be one at same time

Multiplexer - MUX

- n - bit select, 2^{n} input and lt has only one output.
- According to the select bit, the value from the input is transferred to the output.

2-1 MUX

4-1 MUX

Selector (Multiplexer - MUX)

- n - bit select, 2^{n} input and lt has only one output.
- According to the select bit, the value from the input is transferred to the output.

2-1 MUX

Selector (Multiplexer - MUX)

- n - bit select, 2^{n} input and lt has only one output.
- According to the select bit, the value from the input is transferred to the output.

4-1 MUX

Full Adder

- Taking two bits (A and B) and a carry input (Cin), it produces a one-bit sum (S) and carry (Cout) .

A	B	$C_{\text {in }}$	S	$C_{\text {out }}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

4-bit Adder

Other Circuits

- Any circuit can be expressed with And, Or and Not gates.

A	B	C	D
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

1. In the truth table, do and operation for 1 outputting rows
2. Combine these and gates with or gate
