
Digital Design

Fenerbahce University

Verification

Digital DesignDr. V. E. Levent

Content

• Verification
• Verilog Based Testbench

• ISIM Simulation Tool

2/40

Digital DesignDr. V. E. Levent

Verification Approaches

• Implemented RTL design with Verilog /VHDL.

• No errors in syntax, bitstream generated, but...

• What needs to be done to make sure the design works correctly?

• Configure and try method.
• Lots of trials
• Observing problems may not be easy.
• It is very costly in terms of time.

3/40

Digital DesignDr. V. E. Levent

Verification Approaches

• In modern digital system verification approaches, functional
verification is performed.

• The sum of the effort spent on completing a design
• 30% by design

• 70% verification processes

4/40

Digital DesignDr. V. E. Levent

Verification Approaches

• Design to FPGA Before configuring, we verify it with simulation tools
on the computer.

• Simulation to FPGA Advantages over configure and try
• Very fast retry possibility when changes are made to the design

• all signals in the design with cycle sensitivity

5/40

Digital DesignDr. V. E. Levent

Verification Approaches

• Simulate the module after design complated.

• By coding Verilog / VHDL, a module is written that produces inputs
and controls the outputs for the module to be tested.

• However, test modules do not have to be synthesizable. In other
words , some structures that cannot be synthesized in verilog such as
for , while .. can be used in testbench codes.

6/40

Digital DesignDr. V. E. Levent

Verification Approaches

• There are 3 different type testbench

• Simple Testbench : Inputs are fed to the input of the module, the outputs
produced by the module are examined by the designer and it is decided
whether it works correctly or not.

• Instantiate name of tested modules

usually DUT (Design Under Test) is chosen

testbench

DUT

Entries

Various
Outputs

No
Autono
mous
Control

7/40

Digital DesignDr. V. E. Levent

Verification Approaches

• There are 3 different type testbench

• Self checking : According to the entries given in these testbenches , the
signals produced by the tested module are not observed manually by the
designer. Testbench is designed to automatically check whether the signals
output by the tested module are true or false.

testbench

DUT
Miscellan
eous
Entries

Various
Outputs

Autonom
ous
Control
Yes

8/40

Digital DesignDr. V. E. Levent

Verification Approaches

• There are 3 different type testbench

• Self checking with test vectors with vectors: In this testbench , the inputs to
be given from the module to be tested and the outputs expected to be
produced by the module are prepared in a file beforehand. Testbench reads
from this file at the desired times, feeds input to the module and checks
whether the result produced by the module is the same as the expected
result. testbench

DUT
Miscellan
eous
Entries

Various
Outputs

Autono
mous
Control
Yes

Output
File

Input File

9/40

Digital DesignDr. V. E. Levent

Verification Approaches

Sample:

• Design y = (b ∙ c) + (a ∙ b) circuit and verify it in the testbench
environment.

10/40

Digital DesignDr. V. E. Levent

Verification Approaches

• y = (b ∙ c) + (a ∙ b)

module exampleRTL (input a, b, c, output reg y);

always @(*)

y = ~b & ~c | a & ~b;

endmodule

11/40

Digital DesignDr. V. E. Levent

Verification Approaches

` timescale 1ns / 1ps

module testbench ();
reg a, b, c;
wire y;

exampleRTL DUT (.a(a), .b(b), .c(c), .y(y));

initial begin
a = 0;
b = 0;
c = 0;
#10;
c = 1;
#10;
b = 1;
c = 0;
#10;
c = 1;
#10;

end

endmodule

exampleRTL module.

12/40

Digital DesignDr. V. E. Levent

Verification Approaches

` timescale 1ns / 1ps

module testbench ();
reg a, b, c;
wire y;

exampleRTL DUT (.a(a), .b(b), .c(c), .y(y));

initial begin
a = 0;
b = 0;
c = 0;
#10;
c = 1;
#10;
b = 1;
c = 0;
#10;
c = 1;
#10;

end

endmodule

The initial block will only be executed once
when the simulation starts.

Simple testbench approach. The inputs are
given automatically, but the correct or
incorrect outputs are not automatically
checked.

13/40

Digital DesignDr. V. E. Levent

Verification Approaches

`

self-checking testbench

• It contains control mechanisms, if there is
an error, it can print an error message to
warn the user.

• $ display command is used to print an
information message to the screen in the
simulation tool.

` timescale 1ns / 1ps

module testbench2();
reg a, b, c;
wire y;

exampleRTL berry(.a(a), .b(b), .c(c), .y(y));

initial begin
a = 0;
b = 0;
c = 0;
#10;

if (y !== 1)
$ display ("1st exit incorrect .");
c = 1;
#10;

if (y !== 0)
$ display ("2nd exit incorrect .");
b = 1;
c = 0;
#10;

if (y !== 0)
$ display ("3rd exit incorrect .");

end
endmodule

14/40

Digital DesignDr. V. E. Levent

Verification Approaches

`

self-checking testbench

• With this approach, if there are a lot of
inputs that need to be tested, it can be
very difficult to manually export them.

• testbench can be prepared by reading
from a file and giving it as input .

` timescale 1ns / 1ps

module testbench2();
reg a, b, c;
wire y;

exampleRTL berry(.a(a), .b(b), .c(c), .y(y));

initial begin
a = 0;
b = 0;
c = 0;
#10;

if (y !== 1)
$ display ("1st exit incorrect .");
c = 1;
#10;

if (y !== 0)
$ display ("2nd exit incorrect .");
b = 1;
c = 0;
#10;

if (y !== 0)
$ display ("3rd exit incorrect .");

end
endmodule

15/40

Digital DesignDr. V. E. Levent

Verification Approaches

An example of an RTL with a Clock

`timescale 1ns / 1ps

module counter (clk , reset, enable, count);
input clk , reset, enable;

output reg [3:0] count = 0;
reg [3:0] countNext = 0;

always @ (posedge clk) begin
count <= #1 countNext ;
end

always@(*) begin
countNext = count;

if (reset == 1'b1) begin
countNext = 0;

end else if (enable == 1'b1) begin
countNext = count + 1;

end
end

endmodule

16/40

Digital DesignDr. V. E. Levent

Verification Approaches

An example of an RTL testbench with Clock

module counter_tb ;
reg clk , reset, enable;
wire [3:0] count;

counter U0 (
. clk (clk),
.reset (reset),
.enable (enable),
.count (count)
);

initial
begin

clk = 0;
reset = 0;
enable = 0;
#10;
enable = 1;
end

always #5 clk = ! clk ;

endmodule

17/40

Digital DesignDr. V. E. Levent

Verification Approaches

Simulation tools frequently used in industry

• Vivado NAME

• Modelsim / Questa (Mentor)

• VCS (Synopsys)

• Icarus Verilog (Open source)

• Verilator (Open source)

18/40

Digital DesignDr. V. E. Levent

Verification Approaches

Simulation

19/40

Digital DesignDr. V. E. Levent

Verification Approaches

• Simulation

20/40

Digital DesignDr. V. E. Levent

Verification Approaches

• Add a testbench file to the project in
Vivado. In the Sources section, right click to
simulation source. Click to Add Sources …
tab. Proceed just like adding a design file
and an empty testbench file is obtained.
This file will created inside sim_1.

21/40

Digital DesignDr. V. E. Levent

Verification Approaches

• Testbench codes are written into the new file added .

22/40

Digital DesignDr. V. E. Levent

Verification Approaches

• At this stage, there is a point to be noted. Just like in design files, there
is the concept of top module in simulation files. The top module of the
simulation codes to be used to simulate a design must be specified in
vivado .

23/40

Digital DesignDr. V. E. Levent

Verification Approaches

• The design file is added in Vivado, this file is added to both the design
and simulation folders, and the top module is automatically
determined for both cases.

• So in this case , the newly designed test module should be selected as
the simulation top module.

24/40

Digital DesignDr. V. E. Levent

Verification Approaches

• simulation top module

25/40

Digital DesignDr. V. E. Levent

Verification Approaches

• After this step, the simulation can
be started. For this, click the "Run
Behavioral Simulation "

26/40

Digital DesignDr. V. E. Levent

Verification Approaches

• Simulation window is given below

27/40

Digital DesignDr. V. E. Levent

Verification Approaches

Scope window, lists modules

28/40

Digital DesignDr. V. E. Levent

Verification Approaches

Object window, lists input/output and signals inside of selected module from Scope window

29/40

Digital DesignDr. V. E. Levent

Verification Approaches

Added signals in Waveform (ISIM tool adds signals from testbench top module by default)
when simulation is opened .

30/40

Digital DesignDr. V. E. Levent

Verification Approaches

• Simulation starts, the waveform is started with too much zoom -in. Zoom -
out can be achieved by right-clicking on the waveform or by turning ctrl +
mouse middle wheel back .

• Zoom-out is done and when you go to the beginning of the simulation ,
the image in the figure below can be seen.

31/40

Digital DesignDr. V. E. Levent

Verification Approaches

• Counter design simulation output

32/40

Digital DesignDr. V. E. Levent

Verification Approaches

• In the TCL Console, outputs can be observed

33/40

Digital DesignDr. V. E. Levent

Verification Approaches

• When a change is made in the design, the button shown below can be
used to simulate again.

34/40

Digital DesignDr. V. E. Levent

Verification Approaches

• Simulation starts for 10 microseconds by default . If you want to continue
the simulation, the play button shown below can be pressed.

35/40

Digital DesignDr. V. E. Levent

Verification Approaches

• If the value of the signals appears as X in the simulation tool, it means
that the initial assignment of that signal has not been assigned. It
started from an unknown situation.

36/40

Digital DesignDr. V. E. Levent

Verification Approaches

• Difficulty with verification on simulation is there can be lots of input
combinations

• For example, for the circuit that calculates the sum of two 32-bit
numbers, 2^64 different inputs can be fed. It may take years to try all
possible entries.

• So instead of trying every combination, it should be tested by feeding
critical inputs.

37/40

Digital DesignDr. V. E. Levent

Verification Approaches

• Generally, when an algorithm is requested to implement its chip,
these algorithms are first coded in languages such as C, C++, Matlab.

• For verification these C, C++, Matlab coded algorithms inputs and
outputs are written a file.

• These files are used to feeding inputs in to RTL with Testbench and
control the outputs produced with reference file.

38/40

Digital DesignDr. V. E. Levent

Verification Approaches

• A working design in Testbench does not mean will work on configured
real environment FPGA.

• Generally , there are problems encountered on the development chip
due to reasons such as latch or frequency errors that cannot be
reached.

39/40

