Electronic Circuits

Week 5: Parallel Circuit

Fenerbahçe University

Professor & TAs

Prof: Dr. Vecdi Emre Levent Office: 311 Email: emre.levent@fbu.edu.tr TA: Arş. Gör. Uğur Özbalkan Office: 311 Email: ugur.ozbalkan@fbu.edu.tr

The Applied Voltage V_A Is the Same Across Parallel Branches

Characteristics of a Parallel Circuit.

- Voltage is the same across each branch in a parallel circuit.
- The total current is equal to the sum of the individual branch currents.
- The equivalent resistance (R_{EQ}) is less than the smallest branch resistance. The term equivalent resistance refers to a single resistance that would draw the same amount of current as all of the parallel connected branches.
- Total power is equal to the sum of the power dissipated by each branch resistance.

The Applied Voltage V_A Is the Same Across Parallel Branches

Example of a parallel circuit with two resistors. (a) Wiring diagram. (b) Schematic diagram.

Each Branch / Equals V_A / R

• The current in a parallel circuit equals the voltage applied across the circuit divided by the resistance between the two points where the voltage is applied.

 $\frac{V}{R}$

• Each path for current in a parallel circuit is called a **branch**.

Each branch current equals

where V is the same

across all branches.

Each Branch / Equals V_A / R

Parallel circuit.

(a) the current in each parallel branch equals the applied voltage V_A divided by each branch resistance R.

Kirchhoff's Current Law (KCL)

- The pair of leads connecting all the branches to the voltage source terminals is the **main line**.
- All the current in the circuit must come from one side of the voltage source and return to the opposite side for a complete path.
- The amount of current in the main line is equal to the total of the branch currents.

Kirchhoff's Current Law (KCL)

• The total current I_T in the main line is equal to the sum of the branch currents.

- This is known as Kirchhoff's current law (KCL).
- It applies to any number of parallel branches, whether the resistances in those branches are equal or not.

$I_{T} = I_{1} + I_{2} + I_{3} + I_{4}$

• The combined equivalent resistance of a parallel circuit may be found by dividing the common voltage across all resistances by the total current of all the branches.

$$R_{EQ} = \frac{V_A}{I_T}$$

- The equivalent resistance of a parallel circuit must be less than the smallest branch resistance.
- Adding more branches to a parallel circuit reduces the equivalent resistance because more current is drawn from the same voltage source.

How adding parallel branches of resistors increases I_T but decreases R_{EQ} .

(a) One resistor. (b) Two branches. (c) Three branches. (d) Equivalent circuit of the three branches in (c).

RSITES

Resistance in Parallel

Total Current and Reciprocal Resistance Formulas.

• In a parallel circuit, the total current equals the sum of the individual branch currents:

 $I_{\rm T} = I_1 + I_2 + I_3 + \ldots + {\rm etc.}$

• Total current is also equal to total voltage divided by equivalent resistance:

$$I_{\rm T} = \frac{V_{\rm T}}{R_{\rm EQ}}$$

RSITES

Resistance in Parallel

Total Current and Reciprocal Resistance Formulas.

• The equivalent resistance of a parallel circuit equals the reciprocal of the sum of the reciprocals:

$$R_{EQ} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \text{ etc.}}$$

Equivalent resistance also equals the applied voltage divided by the total current:

$$R_{EQ} = \frac{V_A}{I_T}$$

• Determining the Equivalent Resistance.

Two methods of combining parallel resistances to find R_{EQ}. (a) Using the reciprocal

resistance formula to calculate R_{EQ} as 4Ω . (b) Using the total line current method with an for R_{EQ} . assumed line voltage of 20 V gives the same 4Ω

ALLER UNITERSITES

Resistance in Parallel

Special Case: Equal Value Resistors.

• If *R* is equal in all branches, divide one resistor's value by the number of resistors (N).

For the special case of all branches having the same resistance, just divide R by the

number of branches (N) to find R_{EQ}. Here, $R_{EQ} = \frac{60 \text{ k}\Omega}{3 = 20 \text{ k}\Omega}$

Special Case: Two Unequal Resistors.

• When there are only two branches in a parallel circuit and their resistances are unequal, use the formula:

$$R_{EQ} = \frac{R_1 \times R_2}{R_1 + R_2}$$

$$R_{EQ} = \frac{24 \Omega}{40 \Omega}$$

$$R_{EQ} = \frac{R_1 \times R_2}{R_1 + R_2} = \frac{2400}{100}$$

For the special case of only two branch resistances, of any values, R_{EQ} equals

their product divided by the sum. Here,
$$R_{EQ} = \frac{2400}{100 = 24 \Omega}$$

• To find an unknown branch resistance, rewrite the formula as follows to solve for the unknown value.

$$R_{X} = \frac{R \times R_{EQ}}{R - R_{EQ}}$$

• These formulas may be used to simplify complex circuits.

Total Power in Parallel Circuits

• Total power is equal to the sum of the power dissipated by the individual resistances of the parallel branches:

 $P_T = P_1 + P_2 + P_3 + \dots + \text{etc.}$

• Total power is equal to voltage times total current:

$$P_T = V_T I_T$$

Total Power in Parallel Circuits

• Determining Power.

Check: $P_T = V_T \times I_T = 10 V \times 3 A = 30 W$

The sum of the power values P_1 and P_2 used in each branch equals the total power P_T produced by the source.

Opens in Parallel Circuits.

- An open circuit in one branch results in no current through that branch.
- However, an open circuit in one branch has no effect on the other branches. This is because the other branches are still connected to the voltage source.
- An open in the main line prevents current from reaching any branch, so all branches are affected.

• Opens in Parallel Circuits.

In Figure (b) bulbs 2 and 3 still light. However, the total current is smaller. In (a) no bulbs light.

Shorts in a Parallel Circuit.

- A short circuit has zero resistance, resulting in excessive current in the shorted branch.
- A shorted branch shorts the entire circuit.
- Current does not flow in the branches that are not shorted. They are bypassed by the short circuit path that has zero resistance.

• A Short in a Parallel Circuit.

The other branches are shorted out. The total current is very high.

Finding R_{τ} for Series-Parallel Resistances

Overview of Series-Parallel Circuits.

- A series-parallel circuit, or combination circuit, combines both series and parallel connections.
- Most electronic circuits fall into this category.
 Series-parallel circuits are typically used when different voltage and current values are required from the same voltage source.
- Series components form a series string.
- Parallel components form a parallel bank.

Finding R_T for Series-Parallel Resistances

• Overview of Series-Parallel Circuits.

There are three branches in this circuit; sections 1 and 2 are series strings.

Finding R_T for Series-Parallel Resistances

• Overview of Series-Parallel Circuits.

There are three series sections in this circuit; sections 1 and 2 are parallel banks.

Finding R_{τ} for Series-Parallel Resistances

- To find R_{τ} for a series-parallel circuit, add the series resistances and combine the parallel resistances.
- In this diagram, R₁ and R₂ are in series, and R₃ and R₄ are in parallel.
- However, R₂ is <u>not</u> in series with either R₃ or R₄. Resistances in series have the same current, but the current in R₂ is equal to the <u>sum</u> of the branch currents I₃ and I₄.

Schematic diagram of a series-parallel circuit.

Finding R_T for Series-Parallel Resistances

• The series resistances are:

 $0.5k\Omega + 0.5k\Omega = 1k\Omega$

• The equivalent resistance of the parallel resistances is:

$$\frac{1 \text{ k}\Omega}{2} = 0.5 \text{ k}\Omega$$

Resistance Strings in Parallel

• In this figure, branch 1 has two resistances in series; branch 2 has only one resistance.

Resistance Strings in Parallel

V is the same across each parallel branch.

Resistance Banks in Series

- In this figure, R_2 and R_3 are parallel resistances in a bank. The parallel bank is in series with R_1 .
- There may be more than two parallel resistances in a bank, and any number of banks in series.
- Ohm's Law is applied to the series and parallel components as seen previously.

Parallel bank of R_2 and R_3 in series with R_1

Resistance Banks in Series

• To find the total resistance of this type of circuit, combine the parallel resistances in each bank and add the series resistances.

$$R = \frac{V}{I}$$

$$6\Omega = \frac{10\Omega(\text{of } R_2 + R_3)}{2 \text{ branches}} + 1\Omega(R_1)$$

$$R = \frac{24V}{4A}$$

$$6\Omega = \frac{24V}{4A}$$

$$6\Omega = 5\Omega + 1\Omega$$

Resistance Banks and Strings in Series-Parallel 2

Example:

- Find all currents and voltages in Figure
 - Step 1: Find R_{T} .

Reducing a series-parallel circuit to an equivalent series circuit to find the R_{T} .

- (a) Actual circuit.
- (b) (b) R_3 and R_4 in parallel combined for the equivalent R_7 .

Dr. V. E. Levent Electronic Circuits – COMP301

 $I_T = \frac{V_T}{R_T}.$

Resistance Banks and Strings in Series-Parallel

(c) R_7 and R_6 in series added for R_{13} . (d) R_{13} and R_5 in parallel combined for R_{18} .

Resistance Banks and Strings in Series-Parallel 4

The R_{18} , R_1 , and R_2 in series are added for the total resistance of 50 Ω for R_T .

In solving such circuits, apply the same principles as before:

- Reduce the circuit to its simplest possible form.
- Apply Ohm's Law.

Example:

• In Figure, we can find branch currents I_1 and I_{2-3} , and I_7 , and voltage drops V_1 , V_2 , and V_3 , without knowing the value of R_7 .

Finding all the currents and voltages by calculating the branch currents first.

• Find I_1 , I_{2-3} , and I_T .

(parallel branches have the same voltage)

 $I_1 = 3A$

$$I_{2-3} = \frac{V}{R_{2-3}} \qquad I_T = I_1 + I_{2-3}$$
$$I_{2-3} = \frac{90V}{20\Omega + 25\Omega} \qquad I_T = 3A + 2A$$
$$I_{2-3} = \frac{90V}{45\Omega} \qquad I_T = 5A$$

 $I_{2-3} = 2A$

• Find voltage drops V_1 , V_2 , and V_3 :

	$V_1 = V_A$				
	$V_1 = 90$ V				
or					
	$V_1 = I_1 R_1$		$V_2 = I_{2-3}R_2$		$V_{3} =$
	$V_1 = 3A \times 3$	30Ω	$V_2 = 2A(20\Omega)$		$V_{3} =$
	$V_1 = 90V$		$V_2 = 40$ V		$V_{3} =$
Note	2:	$V_2 + V_3 = V$	r A		
40V + 50V = 90V					

Dr. V. E. Levent Electronic Circuits – COMP301

 $I_{2-3}R_3$

50V

 $2A(25\Omega)$

wns

$$R_T = \frac{V_A}{I_T}$$
$$R_T = \frac{90V}{5A}$$

$$R_T = 18\Omega$$

- In series-parallel circuits, an open or short in one part of the circuit changes the values in the entire circuit.
- When troubleshooting series-parallel circuits, combine the techniques used when troubleshooting individual series and parallel circuits.

Effect of a Short in a Series-Parallel Circuit.

• The total current and total power increase.

Effect of a short circuit with series-parallel connections.

(a) Normal circuit with S_1 open.

(b) Circuit with short between points A and B when S_1 is closed; now R_2 and R_3 are short-circuited.

• Effect of a Short in a Series-Parallel Circuit.

The total current increases from 2A with S_1 open to 10A with S_1 closed.

With S_1 closed, R_2 and R_3 are shorted out.

• Effect of an Open in a Series-Parallel Circuit.

Effect of an open path in a series-parallel circuit.

(a) Normal circuit with S_2 closed.

(b) Series circuit with R_1 and R_2 when S_2 is open. Now R_3 in the open path has no current and zero *IR* voltage drop.

With S_2 open, R_3 is effectively removed from the circuit.

• Effect of an Open in a Series-Parallel Circuit.

With S_2 open the voltage across points **C** and **D** equals the voltage across R_2 , which is 89V. The voltage across R_3 is zero.