Midterm
- Midterm Sample Questions
- Midterm Questions
- Midterm Solutions
Final
- Final Sample Questions
Midterm
Final
A question and answer system is offered where students can ask questions and get answers. It is a platform for course announcements, student questions and answers. You can access it below.
https://piazza.com/class/l92ben0xzvd6eh
LMS (Learning Management System), some assignments will be required to be delivered through the LMS system.
Tool Name | Content | Link |
---|---|---|
Von Neumann Architecture Simulator | It is the simulator tool of the von Neumann architecture. | http://levent.tc/files/courses/tools/vonneumann/ |
IEEE-754 Binary to Decimal Conversion Tool | It is a tool that converts a given decimal number to IEEE-754 format. | http://levent.tc/files/courses/tools/floatbin/ |
Decimal, Binary and Hexadecimal Converter | It is a tool that converts a given number in decimal, binary and hexadecimal formats to other formats. | http://levent.tc/files/courses/tools/hexdecbin/ |
Circuit Simulator | A Javascript-based circuit simulation tool is presented. You can access it at the following address. Usage; Select an item from the toolbox and go to the right. Link the added items by drag action. Click on an input node to disconnect it. To delete the added item, drag the item to the toolbox. To edit the item’s name, you can access it on a label section. double click | http://levent.tc/files/courses/tools/devresimulatoru/ |
Circuit Simulator 2 | It is a very comprehensive circuit simulator. User manual: http://levent.tc/files/courses/tools/devresimulatoru2/devreSimulatoruKullanimKilavuzu.pdf | http://levent.tc/files/courses/tools/devresimulatoru2/ |
Bit Logic Operations Calculator | It is a calculator that performs operations on a bit basis. This application is useful for learning the bitwise operations. And, or, xor, not, and scrolling operations are supported. | http://levent.tc/files/courses/tools/bitislemleri/ |
Lab | Topic | Download |
---|---|---|
1 | Combinational Logic | |
2 | Sequential Logic | |
3 | Verification Approaches | |
4 | State Machines | |
5 | Memories | |
6 | FB-CPU RTL Design | |
7 | SOC Concepts, Xilinx IPI Design and Interfaces |
FB-CPU RTL Design
Within the scope of this project, RTL design of a processor named FB-CPU with Verilog language and various code snippets written in machine language on the designed processor will be written. At the end of the project, it will be observed how RAM, Control Unit and Stores in a simple processor can work together and execute code snippets in machine language. FBCPU demo will be made on Basys3 FPGA development board to be used.
Detailed project description: Will be announced after midterm
Week | Topic |
---|---|
1 | Introduction |
2 | Number Systems and Boolean Algebra |
3 | Combinational Logic |
4 | Sequential Logic |
5 | Verification Approaches |
6 | State Machines |
7 | Databus Elements |
8 | Midterm |
9 | Memories |
10 | FB-CPU RTL Design |
11 | Optimizations and Trade-offs |
12 | SOC Concepts I |
13 | SOC Concepts II |
14 | Multi-Clock Zone Design |
15 | Final and Project Presentations |
This course covers combinatorial, sequential circuits, state machines, verification methodologies, memories, design principles, SOC concepts and interfaces, which are frequently used in the digital design world. Within the scope of the course, a processor named Fenerbahçe Processor will be designed for educational purposes and verified with Verilog HDL. FPGA based demo will be presented.
Monday 9.00-13.00
Assist. Prof. Vecdi Emre Levent
T. A. Uğur Özbalkan
There are no prerequisites.
Reference sources of the course are listed below.
Xilinx Vivado 2022.1
The course has 2 hours of theory and 2 hours of laboratory part per week. It is expected that the course materials given by the lecturer will be reviewed before the lesson and repeated after the lesson.
There will be two quizzes during the semester. 30 minutes will be given. Quiz date will be announced one week in advance.
It is mandatory to attend classes at 80%.
Term grade; will be determined by midterm, labs, assignments, project and final exam. Evaluation percentages are given in the table below.
Activities | Rates |
---|---|
Midterm | %20 |
Homework/Quiz | %10 |
Lab | %15 |
Project | %25 |
Final | %30 |
Bonus | Up to 5 points |
5 points will be deducted for each hour that passes over the delivery time of homework and quizzes.
The weight and letter grade corresponding to the end of term grade are given in the table below.
Mark | Weight | Letter grade |
90-100 | 4.00 | AA |
85-89 | 3.50 | BA |
80-84 | 3.00 | BB |
75-79 | 2.50 | CB |
65-74 | 2.00 | CC |
50-64 | 1.50 | DC |
45-49 | 1.00 | DD |
0 -44 | 0 | FF |
The effort table that the student is expected to show during the term is given below.
Content | Hours | Times | Sub Total |
Lesson Preparation | 2 | 14 | 28 |
Lesson Repetition | 2 | 14 | 28 |
Homeworks | 4 | 6 | 24 |
Project | 48 | 1 | 48 |
Course Lesson | 4 | 14 | 56 |
Midterm and Final | 24 | 2 | 48 |
Students are expected to spend an average of 232 hours during the semester to be successful in the course.
Grading of coding assignments will be done by examining the accuracy, quality and details of the algorithmic implementation of the code.
Test entry and expected outputs will be shared for each assignment to be given. However, other test situations that have not been shared with you will be tried during the homework control. Code that takes longer to run than expected may be evaluated incorrectly.
The code should be the design of the desired algorithm. The optimal solution is not expected. But memory and runtime shouldn’t be too much than expected.
The assignment should be written in your own handwriting. The homework answer sheet should contain the name of the course, student name and surname, student number and date.
The aim of the homework is to learn to do in-depth research about the course and to gain practical knowledge. Working with other students on assigned assignments is encouraged. Students who form a study group are more successful in exams than students who study on their own.
But even if you work with others to solve an assignment, you must solve each problem yourself without help. If you obtain your solution through a search (eg an internet search), you should express the solution in your own sentence and/or code. When the solution is asked orally, the student is expected to be able to explain it.
If the given assignment is a code, you have to write it yourself. You can get help from others in debugging. Manual and automatic mechanisms will be used for plagiarism detection in code. Plagiarism, cheating in the exam and similar behaviors are punished according to the disciplinary regulations.
Course Description: This course covers combinatorial, sequential circuits, state machines, verification methodologies, memories, design principles, SOC concepts and interfaces, which are frequently used in the digital design world. Within the scope of the course, a processor named Fenerbahçe Processor will be designed for educational purposes and verified with Verilog HDL. FPGA based demo will be presented.